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1. INTRODUCTION

In engineering systems, not only is the designer concerned with the steady state
behavior under "nice” conditions but must also understand the systern’s behavior under
various "terrible” iransient conditions. Often, such transient conditions determine more of
the design parameters, e.g., queue lengths (buffer sizes), and acceptability of systemn
performance, ¢.g., maximum expected delay, than does the system’s behavior under the
“nice” conditions. Frequently such transients do not lend themselves easily to analysis by
standard queueing models. In such cases, simple linear fow models can provide
straightforward and accurate closed form solutions to many of the transient problems which
arise in engineering networks. Flow models typically vield average results and can provide
estimates of tai] probabilities. Unfortunately, flow models are often overlooked because they
are viewed as being too simple to adequately capture system behavior. However, we often
find that these models when used in conjunction with simulations serve as excellent guides to
understanding the engineering problem at hand. Moreover, should it be necessary, such
models provide a starting point for constructing more comnprehensive models of complex
transient phenomena.

In this paper, we describe this technique, the conditions which permit its use,
and give three example linear flow based models which have provided solutions to real world
Signaling System No. 7 (8S7) engineering problems. Fach example is part of a more
comprehensive study described in the references.

% LINEARFLOWS AND RETRIEVAL TRANSIENTS

The general type of situation that is being considered in this paper is one in
which a significant backlog of messages builds up at some point in the network, and then this
backlog of traffic is released to flow along a path which causes bandwidth, processor real
time, etc. along this path to be fully utilized to work off the transient load. The remarkable
fact is that this type of system can be very easily and accurately analyzed with straight
forward fluid flow models. Before presenting mathematical details, a simple example
illustrating signaling link changeover is used to illustrate the basic technique. Related results

have been given in!! | and the accuracy of the approximations in that analysis was
substantiated by an exact analysis in[%,



954

pUILY, J¥ JSINE JEESHRLY U] B 18 Sujalily

aBessapy ¥ Ag masg Aveg Sumanand) jmioy, weely ‘fexndyy

d-#tiy -*9 d-g
5 Tt i

JEISURL], 19A0IBUEY )

Bupeedig 107 spapory Smanand) pu Wliosep f 2InZLE

Jmeys0Ea g, Ja40080en) SupsudlS fod 19POAl HiomiaN SugEnandy

1 g +
(@
ssayng
Japng USRS Y
40552001 F Hiy
s2gpng Bupjpudig Buyeuig
- WU‘”W 0553304 %
1 10553304 3 J0ESAI02F - Nt m A _ & hid
Kapag Bupnand) g0y, it Buyesdis
A.lo it Ol«ll‘ It 2)EYY 32]A43G HUTE ;
P deyg :
Iayyng 1ossadead e (3) eung 12 g e m % _ i 0
aassancig Suyeudis (q) ‘sroyng jpusuesy yuyy (e) peT R
sapusdnisg) o8essaA] Jo)ny JO IOTARYIY JUSSUBLY, 7 2and{y
) 1G] (s
o-*9%9 4%y dy d-*3 d-y d-1 _
T Tt W kinny sty g JmapsuEs g sasveluug) Suyeudis 104 PO RlomIeN
1~ u s 1 - m 1 -t {u)
] 1
4 1
+ 1 b
; i
@y N\ @n N\ v NEROFT
(®9-0%3 %N (“3-DUN - .
PHMS Bl wjeg
[ Ry oO¥n Ol Aagsusa g [sudis



A

955

2.1 The Signaling Link Changeover Model

The signaling network model we consider is shown in Figure 1a in which there
is a signal transfer point, a switch and 2N signaling links between them. Thé switch is

‘setting up and taking down calls (the trunks on the switch and the other switches it is

communicating with, etc., are not shown), and the signaling links are carrying the associated
Signaling System No. 7 (8S7) ISUP signaling messages. The signaling message arrival
process is assumed to be Poisson. The situation we examine is when half of the signaling
links simultaneously fail (e.g., because they are on the same transmission facility) and the
signaling load from the failed links is changed over to the remaining N working signaling
links.

When a signaling link fails and changeover occurs, there is typically about a one
second build-up of traffic in the transmit buffer of the failed link that accumulates while the
$S7 error rate monitor detects the link failure and the SS7 changeover order and
acknowledgement procedures (seeP) take place. A retrieval procedure is then used to move
the built-up messages and the incoming traffic at the failed links to the remaining working
links. In this example we will assume the retrieval happens instantaneously, and so we start |
at r = 0 with the situation illustrated in Figure 1b. The signaling links have a mean service
rate of L, messages per second, and the link utilization of the incoming traffic to each link
in each working signaling link transmit buffer. The K messages come from the build-up in
the transmit buffers of the failed links before changeover and the messages that were queued
in the working link transmit buffers just prior to changeover. Since the number of queued
messages in the working links prior to changeover is small, K is approximately pp /2.

The instantanecus retrieval of messages from the failed links gives a worst case
jmpact on the delay of the traffic stream that was going to the working links prior to
changeover. This impact can be controlled by the retrieval rate, and this was studied inl4!
using fluid flow models of the type being discussed here. The analysis here focuses on the
down stream transienis seen at an assumed signaling processor and an assumed call

processor within the switch. It is assumed the signaling messages come off the signaling

links and queue up in a single buffer for signaling processing. The signaling processor has
mean service rate by, = NU 15 sp» With &sp < 1. So the signaling processor cannot keep up
with N fully utilized signaling links, and § sp Tepresents the utilization level of the N links at
which the signaling processor utilization becomes 100%.

The signaling processor is assurned to send its messages down stream to a call
processor with a single input buffer and mean servicerate i, = Uy Eepy With§ o, < 1. The
parameter § ., represents the utilization of the signaling processor at which the call processor
utilization becomes 100%. We are interested in the queueing and delay transients that result
in this situation. The product &, & o, will be seen to be a key parameter in the results, and it
is the smailest utilization of the N signaling links that will keep the slowest processor in the
path (the call processor) at 160% utilization.

2.2 Queseing and Delay Transients

Looking first at the signaling link transmit buffers, a fluid flow analysis
approximates the buffer occupancy, @;(1), by

=3
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K/
01(0) = K ~ (1 - prot, 1< %_%)1 M
where (K/l1;)/(1~p) can be shown to be the mean transient busy period of the link after
retrieval [ This buffer transient is illustrated in Figure 2a.

Looking at the signaling processor during the signaling link busy period, the
signaling  processor buffer occupancy, Q. (0, is approximated by
(Nup — gt = Npy(1l ~ Eg,)r. After the link busy period, the buffer occupancy
decreases at the rate Wy, — Npy; = Npj(§, ~ p). This is illustrated in Figure 2b.
Similar to the link analysis, the time (K/it;)/(§s — p) can be shown to be the mean
transient busy period of the signal processor.

Finally, the call processor buffer occupancy, Q,(?), can be characterized by a
linear increase in time during the signal processor transient busy period and subsequently a
linear decrease in time until the transient busy period of the call processor is over. The rate of
increase is easily seen to be Uy ~ g = Bep (1 = icp) and the rate of decrease is
Wep — NpHy = Np l(ﬁcpi sp — P). The resulting call processor buffer occupancy transient
is illustrated in Figure 2c, where it is seen that the mean transient busy period of the call
processor is (KM DAEpE e = p).

Now consider the total queueing through this system as seen by a message that
arrives at a signaling link transmit buffer at time r > 0 (where, as above, r = 0 corresponds
to the time retrieval completes). In this analysis it is assumed that the queueing delay in any
of the buffers is negligible after its transient busy period. Therefore, a message arriving
before the link transient busy period is over (ie., arrives at t < (K/u;)/(1 — p) will
experience queueing delays in all three buffers. Messages arriving after the link transient
busy period, but before the signal processor transient busy period is over (i.e., before
t = (K/p)/(Eg — p)). will experience queueing delays in the signal processor and call
processor buffers. Messages arriving after the signal processor transient busy period will
only see queueing delays in the call processor buffer.

Figure 3 shows the total queueing delay defined above. It has the very simple
form of a delay that decreases linearly with ¢ until the call processor transient busy period is
over. The maximum queueing delay is seen by a message arriving at the start of the transient
(ie.,att = 0), and the total queueing delay it sees is the queueing delay in the link transmit
buffer (K/ji;) divided by the product £, & .

The above results provide a great deal of insight into how to design systems to
handle changeover transients (e.g., sizing buffers), and how to easily estimate the system
performance (e.g., delays and blocking) during the transient. Figure 2 shows the maximum
expected buildup in the buffers. Using results in the next section that give approximations
for the variance of buffer occupancies during these tramsients, and using Central Limit
Theorem arguments to justify that the distribution of buffer occupancies is well
approximated by normal distributions, confidence limits and blocking probabilities are also
easily determined. Figure 3 shows that the delay performance and length of the transient are
determined by two parameters: the queueing delay that builds up in the signaling link buffers

(i.e., K/u;) and the product &SPQCP. These results are easily extended to any number of
processors in the path.
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3. M/PH/I SYSTEMS AND APPROXIMATION FOR OVERLOADS

We consider an M/PH/1 system with an m-phase service distribution having
irreducible form representation (B, $). Our interest is in the expected number in system as a
function of time, N(t), and the second moment of the number in system as a function of time,
M(t), of such systems experiencing overload transients. We follow the basic approach used
for the M/M/1 case that was done in ].
We will nse the same notation as given in 3],
1 A denotes the arrival rate of calls to the system.
B, $°.S denote the vectors and the matrix which define the service distribution. P is a
1 by m vector in which all entries are nonnegative and sum to 1. $% is a m by 1 vector.
The components, of $°, denoted by s j» are the rates of service completion from the j th
phase of service.
3 ( denotes the infinitesimal generator matrix for the corresponding Quasi-Birth-Death

process on state space £ = {0, (1,j); >0, 1 £j <m, i and j integers] and Q; denote the
™ matrix row of Q.

4  x;(r), a scalar, denotes the probabilities that there are i jobs in the system and the
service is in phase j where [ goes from | t0 e« and j goes from | to m,
x;:(8) = (x;1(8), xp(8), -+, x5, {#)} denotes the probability of there being i jobs
in the system and x(#) = (xq(f}, x1(2), x2(2), --- ) denotes the state vector for the

M/PH/1 system, where xg (1), a 1 by 1 vector denotes the probability that the system is
empty
5 x;{1) = 3, x;;(r) denotes the probability that the server is in phase j of service at
i=1
time t.
6 e the mby 1 vector with all entries equal to 1 and ' be the transpose of e.
7 ¢ denotes the transpose of (0, e™ 2e’, 3e’,..).

Clearly, N(#) = x(r)c = x(#) Qc. One can show that: Ogc = A and fork > 0,
Orc = (he—-S°). Hence,

N(t) = x(t) = x(t)Oc = h— Elx (S0 = xwgsj T @
Therefore, N(f) = A— Zs, ,l(z) o
Along the Lame lines, we obtain the following differential equation for M (r):
M) = 2121:;: (D(he — 5% + lzsx i (e + 89 + Axg(D) (3)
M(r) 2AN() - 22}% }:szq(f) + A+ Zsj 4 %)
M(t) = 2AN(1) - zjisjm + A+ ):s]j x (1) (5)
J=t J=

vwhere N;(r) = 3, ix;;(r) which is the expected number in the system at time t and the
i=1
server is in phase j.
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3.1 Appreximation

Consider the following "new" system: A single server with the same m-phase
service distribution but this system always has a call to service. The state space of interest is
the m states representing the m phases of service. Let y; represent the steady-state
probability of the server being in phase j and let r 5 denote the eigenvalue with the smallest

absolute value. Note, 3" s;y; equals the average service completion rate of this systern, [
i

Also, note that the system approaches steady-state at least as quickly as e st approaches zero.

Now return to the M/PH/] system and consider what happens as the "overload”
transient creates a backlog of jobs. During this busy period the server is constantly busy, i.e.,
there is always another job to service. Thus, provided the busy period is sufficiently long,
x {1} ;é ¥i and JanSI) - 0. Which in tum means that

(A= F5;x (1) = (A - 3.5;¥;) = (A — p). These limits occur at least as quickly as
i 1

rst
e ° approaches zero.

Thus, the differential equation for N(z) is (almost) given by N(z) = A — 1L .
This equation is readily solved and yields
N(t) = (A-py1 + N(0) (6)
which is the Fluid Approximation.

Using one additional approximation, N;(1) = y;N(r), the differential equation
for M(r) is {almost) given by M(1) = 2(A — P)N(z} + (A + u). Substiuting N(r) for

N(1), M(6) = 2(h — )% + 2(A - WINO) + (A + p). This equation also is readily
solvable and yields

M@ = (A = p¥?e? + 2(h = )Nt + (A + L)1 + M(0). (7)
Hence, the approximation for the variance is
V(t) = (A + p)e + V(0). (8)

The standard approximation for V(z) is (CV? e —amivatd + CV? service )T + V(0), see 61,
One main advantage to our approximation is that in many cases, at the design stage one
simply does not know the variance of the service times or of the interarrival times. When
possible, we recommend using the standard approximation.

4. GO-BACK-N TRANSIENT TRANSMIT QUEUES

This section addresses the problem of estimating the growth rate of a transmit
gueve for a link using a GO-BACK-N error correction protocol experiencing an error rate
which causes an unstable build up of data in the transmit buffer. This analysis forms the
bases of the Errored Interval Monitor[7], EIM, now the industry standard error monitor for
high speed SS7 links.

Consider what occurs at the transmit queue on a link using a GC-BACK-N
protocol when a single message is corrupted by an error. All of the messages transmitied
from the beginning of the the initial transmission of the errored message unti] the receipt at
the transmitter of a negative acknowledgment will have to be retransmitted. Let 1T be the sum
of a round trip delay for the link and the average emission time for a message. The net
effect of the initiation of a corrective retransmission on a link operating at ¢; octets per
second at a utilization of p is that pc,; T octets will be expected to be added to the transmit
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queuve. If two messages in a row are corrupted, the second message will be retransmitted as a
consequence of the first message being corrupted and retransmitted. The effect on the
transmit queue is the same as if only one message is corrupted; that is, pc; T will be added to
the transmit queue. In fact, the effect on the transmit queue is the same if any or all of the
messages in the period of T, following the first corrupted message, are corrupted. If, on the

other hand, a period of T passes and no messages are corrupted, no retransmission will take
place and the queue will decrease by (1-p)¢;T.

The model developed here divide time into sequentially indexed intervals of :

n
Variables associated with particular intervals will be identified by subscripts. These models
estimate the transmit queue length in response to a sequence of €; errors, where €; is the
number of errors that occur in the i interval.

Let p”; be the probability that a message will be errored in the i interval and
that it will initiate a retransmission sequence. This excludes the possibility that a message is
errored which would have been retransmitted in any case due to a retransmission sequence
initiated by a prior error. Any set of n contiguous p”;’s are mutually exphllsive pri=0,

e
onlyif p’; = O, jefi-n+1,.i~1i+l,..i+n—1]). Hencep”; = % p'; epsilon

. o jei-n+1
sub i > 0, 0 otherwise. If any message is errored in interval i,i—1,..,i—-n+1, the messages
transmitted in the i interval will be retransmitted. Therefore, the estimated change in

transmit queue length, resulting from the €; errors in the ;™ interval and the history of the

i-1
preceding n-1 intervals is: 8g; = {p—|1 - z P c[-:ru if €;>0 and pclf-
jei=-n+l n h
otherwise Given a Poisson arrival of errors with mean arrival rate A, the expected change in

the estimated length of the transmit queue due to errors arriving at A, errors per second in
the i* interval is:

i-1
8gi(he) = |p— 7™ [lu D ©)

jei-n+l

By similar arguments, p”;(A,.), the expected probability that a retransmission will be

initiated in the i interval at error rate Ao is
i-1
pli(A,) = [1 e "”‘} [1 - % P |- pT(k,) the steady state value of p”;(A,)
5 lj=i-——n+1

maust satisfy: p" (A, )=(1—¢ '"w)l(l-—(n—-i)pf(a,e))whichyiezds:

1
prAe)=[(n— D)4 —m—e| . (10)

l1—e 7

Using p"(A.)asp”; in equa&ion@), 8q;(A,) approaches

—h,—

e " T
dg(r.)=(p~ - )Cz;;- (1)

-k =
({n—1)(1-e "3+1)

. . . . dg(h.)
We will now use (11) to derive a simple expression for .

dr

Clearly,
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dg(r,) tim  39(ke)

dt “n = e .,:E,
n

and when evaluated becomes:

dg(he) [ o
dt 1+ A7
transmit queue length at t seconds, O(r), after the start of an error event will increase to
j
1+ A1
Theorem, the transmit queune length at t is approximately Normal with mean Q(:) and
variance (nsing our approximations in equations (6) and 8N
' 1
" (1+ 7\.,3':))
R S
(1 + A1)

}c ;- Therefore, the expected

pcy— t over its length at the start of the event. Applying the Central Limit

{p

CV: + m, where CV,, is the coefficient of variation of message

(p )

length.

A simulator was constructed in order to validate this model. Figure 4 shows
queue length averaged over 100 simulations measured at the end of 9 one second intervals
starting at T seconds after the onset of an error at BERs of 1.5 in 10, 1in 10, 1 in 10° and
1 in 102 for a 5000 mile ( T = 100 msec ) 1.536 Mb/s link (T1) operating at p = .4 . Our
estimated queue length is shown as solid line for each case. Three gqnorm plots of the
transmit queue length at 1, 4 and 9 seconds(labeled A, B and C respectively) after onset at
ber=.0001 are superimposed in the upper left hand comer of Figure 4 along with estimated
and measured means and standard deviations. The ggnorm graphical function provided by
Splus® assesses whether a data set has a Gaussian distribution. A distribution is Gaussian if

the plot is "approximately a strait line ". This accuracy is typical and is suitable for
engineering applications.

5. TOKEN RING SILENCES

In this section we summarize a fiow model of the transients resulting from a
token ring silence. A ring silence is a temporary condition (7 second duration) where no
traffic is passed around the ring. This is followed by a surge of traffic onto the ring at the end
of a ring silence. This surge disrupts the ring service in the short term and may have long
term implications. The fluid model allows a very simple description of the gross system
behavior in response to a ring silence. During the ring silence, all messages are held in the
nodes’ buffers and these queve sizes (are expected to) increase at constant rates. These rates
depend on the amount of ring bound traffic carried by the various links. Once the ring
silence is over and traffic is allowed onto the ring, depending on several system parameters,
the ring could have all or only a proper subset of links start "draining” the backlog of
messages in their corresponding buffers at a linear rate. In the subset case, the remaining
links will either start draining their backlog or will continue to increase their buffer backlog,
albeit, at a lower rate than during the ring silence. Once the first subset of links have cleared
their backlog, a second subset of links will start to reduce their buffer backlog. This process



961

HUFT N-PRG-00) V UG JUSAH J0445 Uy SuLIng pajemumody epe(g

(095) yuaaj Jo.x7 Jo BuyuuiBag eoulg sty y,

8 9 L4 Z L
i ] B B 3
- o
S10000° = dud o e
F g m
1TSIaN pAepubIg Jo ST uTaly
i g i @
,_ "
-~ 8
" OIVE = ARALS Pow
™ B065L, BT poITRT m M W
’ BLEL = AFQLE pe &=
e 00DPS5L = TR PRI %
(W) ©
180¢° = HHY Ron] pampRg Jo PRl _Sﬂnzfgwrfgqﬂo
£ & g M z ) o
. & . & . m m ” W m
166 = HHEd mm mw o
0704, = ATQLS P A m " 065¥ ® AROLS Py  H =
OLUFES MY pRvTEG M 7 HOOPOE m TR pryviRc]y M M
0089 = AROLY pUe 8 ESY B ATCLS P - =)
Wt OGRS = Tes il PejrIpiy £ BOOTOR = Hsa3 pepwnn v .m

*p NS g

Q
&
&
mv
5
44

ke
=
:

V=]

B

b
=g
8
]

5
=S



962

continues until all links have cleared their excess ring bound traffic. Under certain
conditions™, the backlog on some subsets may never be cleared and in fact increase without
bound.

Consider a ring operating at ¢, octets/second(Figure 5). For convenience, the
links impinging on the ring will be partitioned into n subsets {£1,£,,...,£,} so that links
in £; all have operating rate r; octets/second and r; < 73 < ... r,. |€{denotes the number
of links in the € class. The ring itself offers a limited type of service to the links. A link
can place all of its buffered messages on to the ring up to a limit of ef *u octets per token
pass and is generally determined by a ring write buffer size. ef octets will be written on the
ring per octet received from a link. u is the maximum amount of actual link data (includin
level 2/3 headers) that can be written to the ring per token pass. A simple conversion !
from a ring with links using different sizes of ring write buffers ( notationally u becomes u;)
to the modeled case requiring homogeneous ring write buffer sizes which preserves the
transient properties of the ring mitigates the restriction on u;.

LEGEND / Tgnsient
Link Status ot Time ¢ uele /\
¢ * e Length
= ww  Link Drained of Backlog i T .
Platas Data Which Arrves r‘,xm ’, ns&, e
{ast Taken Pege vr Ring Bytes Pt on Ri ’ ’:’ NG Timy
w1 ik Not Drainsd of Bacidog per Token Pass ~ . s
Plates of % p Bytes on i \ - H
Ring por Token Pass - [ @ 2 Transient
;! XY =~ Quene
i By'tﬂs;[;:. onPRing I, lw Leng-th i rl
1 r Token Pass "
v ’pf Tirpe

Transient
Queue \

; Length
- ,g" h I & Y
PR JANE. Time
Bog
\ Transient b
h & & Y Queove \
Time Length
L 4 & %

Figare 5. Link Transients at Time ¢
4L <tsy

t; is the time after the beginning of ring silence when £ ; first becomes empty (¢
marks the end of ring silence ). The links will dispose of their backlog in ascending order of
link subset index. Figure 5 depicts the links at time t, 1, <r<z;. All of the links in £,
through €, _, have drained their backlog and are placing only data which has arrived since
the end of the last token visit onto the ring. All of the links in subsets £, through €, have not
yet cleared their backlog and are all placing the ef Xu octets (the maximum allowed) onto the
ring per token pass. Typical queue length transients are schematically depicted for various
links. It is this action which we wish to characterize. At 1g, the links in €; have on average
rito octets backloged. (We are assuming that the steady state backlog of octets is negligible
with respect to the transient queue build up.) At some time ¢, tq < 1 < 71, a total of r;¢
ociets have flowed in a link in £; and uf) (# ~1¢) octets have flowed out of a link in €;.
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Where f; is the token cycle rate (cps) from time 1,1 to ¢;. Most of the models described in
this section use token cycle time, #ct, in seconds per cycle and token cycle frequency, f, in
terms of cycies per second. We take the simple approach of using the average token cycle
time as the token cycle time and its reciprocal as token cycle frequency. Assuming that the
i
o 3 [€elrk
k=1

ring utilization p,=————~—-g---mm, is large and fixed, the number of links on the ring is
r

large and that the individual links’ contributions to ring utilization are very small we can
argue that the variance in fct is negligibly small. In general, the average token token cycle

time is

. where WALK is the time it takes for a token to pass around a ring with no

;
traffic, and p, is the ring utilization. Much of the later analysis describes situations wherein

links in certain subsets will be emitting u octets per token pass and the links in the remaining
subsets will be emitting just the data accumulated since the last token pass. This is
appropriately modeled by including the emission times of the links emitting a fixed amount
of data in WALK and calculating p, based on the remaining links. Specifically,

Jj~1
Zlil e ri joi
lwf—i———g——————— ufitiy — 7, ufphAty
e k=1
fj= - . y.leidlﬁg fj = uf--—-r~ , Afk =ty = o

iTTi

lefil ef u

WALK + e

ey

The queue length, g;(r) of a link in €; at time t can be computed at the difference between
the total amount of data which as entered the link and the total amount of data permitted onto
the ring. We see that
vl
!’J,t - W E katk “ufv(r““tv)s tV"”l S 1 .,<.. Iv
k=1 .

g (1)=4 (12}

We have simulated ring transients to confirm our models. Various combinations
of ring parameters were tried as part of the mode] verification. We present the simulation
results (Figure 6) measuring queue lengths during transients for the case n=4, £,=200, r =
224 kb/S, iy =508, €2=200, Fo= 448 kb/S, Ug =508, 33330, Fa= 614.4 kb/s Uz :1000,
€4=06, ry= 1.2288 Mbf/s, us =1000, ¢, = 64 Mb/s, WALK = .388 msec, ef=1.26 and ¢, is 1
sec using an SS7 message length distribution. The lines correspond to model estimates and

the numbers are simulation results for the correspondingly numbered link subset. Again, the
accuracy is suitable for engineering applications.

6. SUMMARY

This paper has described and to some extent justified the use linear flow
approximations to model systems under stress. Three distinct examples, taken from SS7
engineering studies, were presented to illustrate the application of the technique. These



964

examples were selected for illustrative purposes and were taken from more comprehensive
studies which used flow models to explore a variety of system characteristics. This
technique has proven to be applicable for not only back of the envelope calculations, but for

constructing more elaborate models of complex phenomena.
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Figure 6. Simulation vs. Fluid Model
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