Experiencing Statistical Regularity

IEOR 4106

Ward Whitt

April 8, 2003



Experience Statistical
Regularity

By Looking at Random Walks



DTMC: discrete time &
discrete state

CTMC: continuous time &
discrete state

Random Walks: discrete time
& continuous state

Many steps: continuous time
& continuous state
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Simulation Experiments



Plotting Random Walks

X1,Xo,... IID random variables

Sn=X1+ -+ Xn, n=>1,
with  So =0 partial sums

To start: X, = U, uniformly distributed on [g), 1].



What should we see?



8
time index n
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Look at larger sample sizes!



What should we see?

Looking at Sq,...,5n
when n = 107 for j = 1,2,3.4
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How does plotting work?
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Map Into the Unit Square

(if we ignore the units on the axes)
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The Plot Function: Step 1

Fit horizontally: create a function on [0, 1].

For vo,vy1,...,yn given, let x : [0,1] — R
be defined by

aj(t)EyLntJ, O<t<1,

where |z| is the greatest integer less than

or equal to =z.
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The Plot Function: Step 2

Fit vertically.

Place between infimum and supremum.
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Fit Vertically

For = : [0,1] — R given,

where

plot(z)

inf(x)

sup(z)
range(x)

(x — inf(x))/range(x),

inf{x(t) :0<t<1}
sup{x(t) : 0 <t <1}
sup(z) — inf(x)

15



When you plot a random walk,

You get a random plot.

You get a random function.

a random function mapping [0, 1] into [0, 1].

You get a stochastic process.
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Modified Experiment

Let X; = U; —0.5.

Construct centered random walk.

What should we see now?
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You see Brownian motion!!!
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Density Estimates

for last partial sum 5,
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density estimation based on 1000 samples
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T he Random Plot Limit

Theorem. If the stochastic-process Iimit S, = S
holds, where

Sn(t) = (S| —mlnt])/cen, 0<t<1,

for some constants m and ¢, : n > 1, and
P(range(S) = 0) = 0,
then

plot(S, — mk : 0 <k < n)=plot(S).
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Invariance Principles
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New Random Steps

Let Y; = f(U;).
X, = Y, — EY,.

new centered random walk.

What should we see now?
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T hree Cases
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(i) f(U)
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T he Exception Makes the Rule
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Case (7i1)

() f(U)

(i) f(U)

(i) f(U)

—mlog(U) for

m =1, 10
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Heavy Tails

PP s = pot/r <71y,
= P(U<t P)y=¢t"

Has infinite mean for O <p <1

Has infinite variance for 0 <p <2
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Plots of the Centered Random Walk

for U—1/P with p = 3/2
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More Plots of the Uncentered
Random Walk

for U—1/P with p=1/2
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Conclusions

Plotting reveals statistical regularity.

Stochastic-process limits explain the
statistical regularity.
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tail of empirical cdf in log-log scale
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density estimate for p = 1/2

density
10M13 2*10M13  3*10M-13  4*10M-13  5*107-13

0

values

density estimate for S,, — mn with summands
U—1/? for p=1/2

46



tail of empirical cdf for p = 1/2 in log-log scale
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