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This paper is concerned with the analysis of queueing systems
in which customers may leave due to impatience. In the single
server case, we derive the stability condition of a GI/GI/1
queue when the impatience has an arbitrary distribution
function (d.f.). For the case of Poisson arrivals, we also
determine analytically the stationary d.f. of the virtual
waiting time which is shown to coincide with the stationary
d.f. of the actual waiting time. Concerning multi server queues,
we analyze some special cases[involving impatience with a
general d.f.1 of practical interest for modeliing telecommuni-
cation systems.

1. INTRODUCTION

In most studies of queueing systems, little attention is paid to practical limita-
tions such as finiteness of queue length (limited buffer capacities) or finiteness
of waiting times (times out, or limited patience). However such a phenomenon is
often encountered in telecommunication systems.

- In a telecommunication network, a subscriber may give up due to impatience before
the connexion he asks for is completely established, resulting in inefficient use

of resources.

- In a packet switching network, the switching nodes have limited buffer capacities.
Hence, an arriving customer is accepted only if its size added to the sizes of the
packets already present in the node is smaller than the total capacity. Since the
output rate is constant, this is equivalent to a Timitation on its waiting time
Systems with limited waiting times can be classified as follows :

- the limitation acts only on waiting time or only on sojourn time (waiting + ser-
vice) 3

- the customer can-calculate his prospective waiting time at the arrival epoch

and balks if this exceeds his patience or he joins the queue regardless, Jeaving
the system if and when his patience expires.

Combining these two distinctions gives four queueing systems with “impatient
customers” : |

a) limitation on sojourn time, aware customers :

The entering customer leaves immediatly if he knows that his total sojourn time is
above his patience (in such a system, all server work is useful). Ergodicity condi-
tions for general single server queues are given in [ChP 791, Some special cases
are solved in [Ga 771, [Ho 791. ‘

b) limitation on sojourn time, unaware customers :

This is be case if customers do not know anything about the system and are unaware

of the beginning of service {e.g.) a calling subscriber waiting for a dialing tone).
In this case service may be interrupted by discouragement. So that some server work
‘may be not be useful. Some special cases can be found in {Da 641, [Co 691, (Ta 741.
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c) limitation on waiting time, aware customers :

The same as a) above, with the impatience acting only on waiting time.
d) limitation on waiting time, unaware customers :

The same as b) above with the impatience acting only on waiting time.

The study of systems ¢) and d) can be unified through the following remark :

As long as we are concerned with rejection probabilities, or with the waiting time
distributions of successful customers, the finally discouraged customers (of

case c)) do not influence the system and can be discarded on (arrival (as in d)).
The correctness of this statement will be made clear if one realizes that (suppo-
sing service in order of arrivals), the fate of an arriving customer depends only
of the unfinished work of the server, which is clearly not modified by customers
who finally Teave impatiently, even if they stay in queue (see the remark on
virtual waiting times section 2.1).

The present paper is devoted to the analytical caracterization of waiting times in
system ¢) (and hence d)). For this, we use the notation G/G/m+G : the three first
symbols have the same meaning as in Kendall's notation. The last one specifies the
impatience law. Section 2 is concerned with GI/G1/1+GI queues. Some functional
equations are established for the distribution functions of the waiting times
offered to customers. This approach was investigated by F. Pollaczek in Po 621,
who reducesthe problem to the resolution of a set of (unsolved) integral
equations. Our contribution, concerning these general queues, consists in
determinating the condition assuring stability, by means of probabilistic,
methods. In section 3 we limit ourselves to M/GI/1+GI queues. The statignary dis-
tribution functions of actual and virtual offered waiting times are shown to
coincide and are given by means of the resolvent of a Volterra equation. In the
special cases of exponential and Erlangian impatience distribution functions,
series form solutions are given, generalizing the results obtained by Barrer

(1Ba 571) on M/M/1+D and Gnedenko ([GnK 681) on M/M/m+D and M/M/m+. Multi server
queues with general impatience distribution function are considered in section 4.
Section 5 contains general relations (probability of rejection...) as well as

mean values for waiting times. Lastly an application involving the evaluation of
some major features of a telecommunication system is described in section 6.

II. ON GI/GI/1+GI OUEUES

11.1. Assumptions and notation

In this section, we consider a first in, first out single server queueing system
in which customers are subject to impatience. More precisely, let Tn, n ¢ N be the

arrival epoch of the n-th customer (T0=o). We define :
A . e i . : ot
t, = Tn—Tn_1 : The n-th inter arrival time (t, eiR")
5 : the service time of the n-th customer (s« R
9, : the patience time of the n-th customer (gn € R+).

Let W, n ¢ IN be the work load just before Tn (unfinished work). We assume the

system to be of type a) of section I : the n-th customer enters the system only
if the time to wait for accessing the server does not exceed his own patience.

That is
If g, <w, the n~th customer is impatient and does not enter

If 9 > ¥n the n-thcustomer stays in queue
Remark : For system c), where all customers enter the queue, we ought to say :

9, < Woo the n-th customer does not modify W the work load of the server.

If 9, > W the nth custi
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th customer will be served and thus modify w .

If 9 > Vo the n
This formulation is clearly equivalent to the previous cne : the evolution of w
in the two cases will be the same, establishing the equivalence of systems c)
and d). We make the following assumptions : (tn,nrN} (resp.{sn,n(N))

is a sequence of independant and identicaly distributed random variables oniR+

with distribution function A (x) (resp. B (x), C (x}, x ¢ R'. A (x) and B {(x)

are supposed to have finite first moments denoted as 1/ and 1/u respectively.

C (x) may be defective (ie, we may have lim C (x) # 1) but we assume that C(0)=0.
b Saatid

Throughout the paper, we mainly use G{x) 8¢ (x).

11.2. Recursive equations for the offered waiting times

We derive now a recursive equation for the sequence {wn, n ¢ N} gen ralizing

Lindley's equation ([Bo 76)). Notice that w_is the time that the n-th customer
would have to wait for accessing the server 'if he were suffiﬁently patient.
Hence, we call it the actual offered waiting time. Let W, ¢ R" be some initial
condition, we have for n z 0 :

+ .
(2.1) { L T TS L LR AR
Woel T &wn - tn+1| otherwise
With our assumptions, {wn, ne N} is a Markov chain with state space R* and

transition kernel
A
{ P(x,A) = Plw 4 ¢ A [wn = x1

x < R, A cF(RY)

given by :
P(x,A) = G(x) ./, 1A(rx+y-z3+) dB(y) dA(z) +
IR xIR
(2.2) + (1 - G(x)) ‘£+ 1, Tx - 21%) dA(z)

where IA(u) =1 iff u ¢ A,
Let Wn(x), x ¢ IR be the distribution function of W He therefore have the
following integral equation for the wn‘s :

o

W . (x) = J G{u) D(x-u) dwn(u)

n+l o
(2.3) & (1= 6(u)(1 - Au-x))dW (u), x <R*
0
where D(y) 4p an - tn+l <yl = J B(tty)dA(t)

o]
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I1.3. Stability condition

11.3.1. Sufficient condition

This section is devoted to the determination of a sufficient condition for w to

be an ergodic Markov chain (and hence for (2.3) to have a unique stationary solu-
tion). It is based on the method proposed by Laslett, Pollard and Tweedie in
(LPT 78]. Let :

ne>

Inf (t/ A(t)
sup (t/ B(t)

1)

0)

—— e,
o o>
i

Lemma 1 :

Assume b - a < 0. Then the Markov chain {wn n e N} with transition Kernel P(x,A)
(2.2) is eg-irreducible (where £y 15 a measure onR™ concentrated in {0}).

Proof : Consider

{ g = Wy ‘
- ) - +
Zoep S Lzg tsp - gl n=20

when comparing with (2.1), we get :

(2.4) Wz oz, ¥n ¢ M

We have furthermore : Ve > 0,3ip > 0,

Plb-a < sn~tm+1 < b-atel=p >0
Let x « RT and k = f5§54 (where [¥1, ¥y ¢ RY denotes the smallest integer greater
than y)} consider the event :

E=n {b-a < s,~t.,, s b-a+e}
0sisk LA
We have :
Eciz = Olz0 = x}
Hence :
(2.5) Prz, =0z, = x1>p5 >0

From (2.4) and (2.5), we derive completing the proof :

Pr U {w =0]w, =x}1>0
nz0 n 0

Lemma 2 :

Assume b-a < 0. Let p = 2 When 0 < 1- G(=) the Markov chain {w_, n <IN} is er-
godic. H n

Proof : For any 8 ¢ R+*, let B be the interval [0,8]. We first prove that B is a
test set for the Markov chain. Then, we show that when the condition 0<l- G{«=) is

Kt R A R L -
:.wgsgym:amm% LRI

fulfilled, and for a suffici
is a bounded function, so th

First part of the proof

Since W is no—irreducible,
N>0cINand § > 0 c R such

Max  P"(y,
Os<n<N

(see theorem 3.2. in[{LPT 78]
proof of lemma 1. ¥y ¢ B, w

Py, 10}) =

matches.

B
a-b
Second part of the proof

Thus any N z

Let TB be the hitting time o
Tg = inf {n
We have to show that :

(2.6) sup ElTg [ w
xcB

This will be proved if one ¢

(2.7} E Cwy | Wy

#

(2.8) E Twy | w,
(see th-2.2 in [LPT 781). We
Efwy ]wo = x

+ (1 - G(x))

X
JOA(t)ydt
0
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E lwy {wo =

Concerning (2.7), we write :
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fulfilled, and for a sufficiently large B, the mean hitting time of this test set
is a bounded function, so that the chain is proved to be ergodic (see [LPT 7871).

First part of the proof

Since W is co-irreducib1e, B will be proved to be a test set if one can find
N>0cMNand § > 0 ¢ IR" such that :

Max  P"(y, {0}) =6, Vy B
O<nsN

(see theorem 3.2. in[LPT 78]).Consider the sequence {zn, n e} defined in the
proof of lemma 1. Vy ¢ B, we have :

PM(y, {0}) = Pl wy = 0wy =] 2 Plz = 0fw; =y
Thus any N z Eﬁs matches.

Second part of the proof

Let TB be the hitting time of B :
TB =inf {n 20/ W€ B}
We have to show that :

X) < e

#

(2.6) sup ElT, |w
xeB B0

This will be proved if one can find € > 0 and M < = such that :

i

(2.7) Elwy|wy=xlsx-¢ Vxe B¢

(2.8) E (W lwo = x1 M ¥x ¢ B

(see th-2.2 in [LPT 787). We first derive from (2.2) :

+
Elwy jw, = x1 = G(x S Tx +s-t]  dA(t) dF(s
1 * 0 ) RYRY )

“+

(1-6(x) J,rx-t1" dA(t)
R

? A(t)dt + g(x)
0

(1 - F(t=x)) A(t)dt

» - 8

Hence for x < 8 , (2.8) is satisfied since

(1 - Flu))du £ B +

T

E LWy [wy = x1<x+

[N}

Concerning (2.7), we write :
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x o
Elwy [wy = x1=x - é (1 - A(t))dt + G(x) S (1 - F(t-x)) A(t)dt
X
sx-ta z (1 - A())dt - 6(x) . &

Thus, ¥ e >0 on /x> xg

Elwy [wy = x3 € x - l_:_§ﬁiﬁl + e

Assume now that the condition 0< 1 - pG(«) is fulfilled. Then there exists X € r
such that for x > x4, 1 - pG(x) > 2e. Hence, if B8 > max (XO’xl) [0,81is a test set
with bounded mean hitting time, completing the proof.

11.3.2. Necessary condition

Lemma 3 "3

Ifw, is ergodic, then 0 < 1 - pG(w)
Proof : From equation (2.1) we get :

. +
“nt1 2 Wp * 5y 1(

Yp =)
Hence :
n

Wil 2%t i§0 b

(2.9) N
A -

where bi =5 l(gi =) t1+1
If 0> 1 - pG(=), E[bij > 0. Thus the R.H.S. converges a.s. to infinity (strong
law of large numbers) so that W is not ergodic.

Breoe-pe s Sk o R B T
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IT1. ON M/GI/1+GI QUEUES

Throughout this section, we

1 -
A(X)={
0

II1.1. Functional eguation

We define the virtual offer
integral equation generali;
v.o.w.t. at time t, n(t),
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o
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1
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o-
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°
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T11. ON M/GI/14GT QUEUES

Throughout this section, we assume that
AX

1-e" xz0
A(x) =
0 x <0

II1I1.1. Functional equation for the work load distribution function

We define the virtual offered waiting time (v.o.w.t.) process for M/GI/1+GI. An
integral equation generalizing Takacs equation {{Ta 62]) is then established. The
v.o,w.t. at time t, n{t), is the time a test customer of infinite patience would
have to wait before service if entering the queue at time t. n(t) will be also the
“unfinished work" of the server, and will only be modified by successful customers.
Let V(t,x) be the distribution function of n(t) and Y(t,s) the Laplace stieljes
transform (L.S.) of V(t,x) :

V(t,x) = P [n(t) < xJ te RY, x cRT

P
w(tss) =/ e d V(t,x) teR', seg, R,(s)>0
We proceed now as for Takacs equation, outlining the most important steps. Using
the Markovian property of n{t), we get :
X+4

(3.1) V(trhx) = V(t, x+8) + A0S G(u)(1 - F{x-u)) D, V(t,u) + 0 (2)

We multiply both sides by e™*! and sum for x ¢ [0,=]1. Using the relation :

0(t,s) = s/ eV W(t,x) dx
0

(3.1) becomes :

Y(t+a,s) = eSA(&L%ii)- aV(t,a)) + o(a) -

23T

© X
-8 dx e 7 G(u) [1 - Fx,u) 7 dV(t,u)
0" 0

By analogy to y(t,s), define :

(3.2) vg(tss) = e Y 6(x) d, V(t,x)

C)l'\. 8

After inversing summations and letting A -+ 0, the above equation finally becomes :

% 2= u(t,s) - V(t,0) - a(s) g(tss)

(3.3) , a*
where {a(s) £ E—Egiil
B*(s) is the L.S. transform of B,
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111.2. A necessary and sufficient condition for the complete convergence of the
v.0.W.t. process

I11.2.1. Necessary part

Assume the existence of a limit

(3.4) V(x) = Him V{t,x)

£
y(s), the L.S. transform of V(x) will be solution of :
(3.5) Y(s)
with :

]

v(0) + a(s) vg(s), Re(s) =0

a(s) = A 1-B (s
3
We restrict s to take real values. In this case ¢ and wG are real, and :

§5).6(0) < ugls) = 1 e

TSXG(x) dv(x) s ¢(s) <1

or
(3.6) a(s) v(s) G{=) < ¢(s) - V(0) = a(s) ¥(s)

The first inequality of (3.6) implies V(g) > O (if not, as a(s) < 1 for some
s > Sp, it would mean Y(s) = 0 for s > So and thus for all s). The second inequa-

lity gives :

0 < V({0) = ¥(s) 'l - a{s) G(=)1
We must have 0 < y(s) < 1 and thus for all s : 1 - a(s) G(») > O.
For s + 0, a(s) - p and the following inequality must then hold :
(3.7) 1- G(») >0

Note that the inequalities (3.6) also imply the uniqueness of the solution of
(3.5)

I11.2.2. Sufficient part

The discrete time Markov chain {wn, n ¢ N} is imbedded in the continuous time
Markov process {n{t), t ¢ R’} :

(3.8) Wy = (1))

We use this property to derive the complete convergence of n(t) as a consequence
of the 1imit theorems on semi-regenerative processes. Let :

Ky(x,8) = PIn(t) € B, T) > t [n(0) = x1, B <B(R")

PLn(t) e 8] Ty > t, n(o*) = x1 . PrTy > ¢ [n(0”) = xa
t

"

-A
= s(x,t)+ () e

where

When pG(«=) < 1, W, is an er
exists a non defective dist

3 Vim W_(x
in Uy ()
with 1im

X400

Let J(x), x ¢ R", be the di
X

Ix) = S|
0

The 1imit theorem on semi-i

3Tim PIn(t
10
i.e.
= A
(3.9) V(x)
= A

To prove the complete conw
tive, V(x) is also a prope

111.3. On the stationary d

In this section, we extend
stationary distribution fo
alsc. If (3.7) is fulfille

unique solution of the inv

(3.10) +

Furthermore, we get from t



te convergence of the

e real, and :

's) <1

a(s) < 1 for some
s). The second inequa-

hold :

of the solution of

ne continuous time

1{t) as a consequence

BERY
Ty >t In(ot) = x
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where :
5,0B) =1ifuck uc R
0ifu B, B PR

When pG(~) < 1, W, is an ergodic Markov chain. Therefore, if (3.7) holds, there
exists a non defective distribution function W(x) on RY such that :

3 Tim W (x) Swx)  wvx <R
! .

mald

with 1im W(x) =1

X0
Let J(x), x e RY, be the distribution function of n(T +)

J(x) = 2 (6(u) B{x -u) + 1 - G(u)) dW(u)

The limit theorem on semi-regenerative processes yields :

. 1 [+3] o
31im P(n(t) < BY= S oddx) S K (x,B )dt -
BT ot

oo

t
= Af I(dx) {) (1= A(t)) 60, ¢yl B)dt

o 8

"

A (1 - Alt)) J(t+x)dt

o 8

(3.9) TV(x) tax

w; (1 - A(t)) TH(tsx) = S G(u)(1 - B(x+t-u))dW(u)ldt.
0 0

To prove the complete convergence of n(t),we remark that because W(x) is non defec-
tive, V(x) is also a proper distribution.

I11.3. On the stationary distributions of actual and virtual offered waiting time

In this section, we extend Khinchin's theorem in proving analytically that the
stationary distribution fonctions of W and n(t), W and V, coincide in M/GI/1+GI
also. If (3.7) is fulfilled, w, is ergodic. Hence H(x) & 1im wn(x) is the

N0
unique solution of the invariant measure equation derived from (2.3) :
W(x) = G{u) D(x-u) duW(u)

(3.10) s 7 (1 - o)) (e X4 du(u)

o 8o8

with D(y) = ) J B(tey)e "t
0

Furthermore, we get from the semi-regenerative approach (equation (3.9) in which
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we take A(x) = 1 - e'AX) :

V(x) = x e U ay
(3.11) X "
- g e umx) £ G(6)(1 - B(u-t)au(t)
X

Some inversions in the right hand side of (3.10) show that the right hand sides of
equations (3.10) and (3.11) coincide, completing the proof.

111.4. Resoclution of the functional equation

111.4.1. The density of the stationary v.o.w.t. distribution function

Let us assume the existence of a stationary solution. To prove the existence of a
probability density function for the v.o.w.t. distribution function, we use the
following lemma (see for instance {Fe 711).
Lemma 4
For ¢ to be of the form
w(s) = e 5% £(x) dx where 0 = £ < A
0

it is sufficient and necessary that :

n
(3.12) 0= {80 45y < 2

for all s > 0 and all n, where w(">(s) denotes the n-th derivative of y(s).

We apply the criterion to y(s) - V(0). Let ¢(s) be the L.S. transform of V(x) -
V(o) : we have :

(3.13) ¢(s) = ¢(s) - V(0) = a(s) wG(s) from (3.5).

At this point we note that a(s) is the Laplace transform of the “unfinished work",
and as such has a density :

als) = 7 e > g(x)dx, a(x) = A [1 - B(x)J.

O 8

Thus a(s) satisfies the conditions of the above Temma ; let D be the maximum of
its density. For n = 0 we use the simple bound :

vg(x) = 7 e X 6(x)av(x) = y(s) = 1
0
and so :

D
0<o(s) =g

n

satisfies (3.12) for n

0. For n 2 1, (3.13) above gives :

. 2 ¢ sy o35

o{"(s) =

a(s) is the L.S. transform

0 < (-1) a(
Therefore :

1" oM
(_1)7'1 (p(n)(s

From the definition of b

s 1 i§§)
je0 3!

and finally :

§ = fG(x
0

which puts ¢(")(s) above i1
positiveness. This complep
bution function may be wri

Hence V(x) is composed of
In this case (3.5) may be
tion) :

v(x) = W(o
(3.14) -
v{p) + [

111.4.2. Resolution of the

In this section we derive
satisfied so that V({0) > (
the second kind. The methc
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ning the special cases of
terms of series for the L&

Consider the following fun

f(s) = M1
(3.15) K(s,t) =G
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a(s) is the L.S. transform of a density :

0 < (_1)1 a(z)(s) . D!

- S.Q,+l
Therefore :
_an L (n) PR _1yd () D{n-j)!
(-1)" ot (s) s jfo (=37 1% e (s) = Ao
n o\
(-1)" o{M(s) < IL z L5 4 {3s)
s 3=

From the definition of wG’ we write :

_erd . n
Gl -

5 8

]

J=0

and finally :

§ = [ G(x) dV(x) <1
0
which puts ¢(n)(s) above in the desired form (it is easy to verify directly the

positiveness. This completes the proof. So, when it exists, the timiting distri-
bution function may be written as :

{ U(s) = V(o) + Z v(u) e Y du
0<v(u) <D

Hence V(x) is composed of an absolutely continuous part and a mass at the origin.
In this case (3.5) may be inverted as follows (with v(x) the unknown density func-
tion) :

v(x) = AV({p) [1 - B{x)] + v(u) G{u) I1 - B{x-u)1 du

o X

(3.14)

[

V(g) + J v(x) dx =1

111.4.2. Resolution of the functional equation for M/GI/1+GI

In this section we derive the general solution of equation (3.14) when (3.7) is
satisfied so that V(0) > 0. (3.14) is shown to be a Fredholm integral equation of
the second kind. The method of the resolvent yields integral series for the desired
density function. In the following sections, further results are obtained concer-
ning the special cases of Poisson and Erlang impatience distribution functions, in
terms of series for the Laplace-Stieljes transforms.

Consider the following functions :

f(s) = AL1 - F(s)]

(3.15) K(s,t) = G(t) [1 - B(s-t)] i

¥(s) = v(s)/V(0).

Vot
o
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From equation (3.14), ¥(s) is solution of :

¥(s) = f(s) + A 7 J(s,t) v(t)dt
(3.16) { 0

s z0

Due to our assumptions concerning the existence of the first moment of F, f(s) and
K(s,t) are both square integrable functions ; thus (3.16) is a Volterra equation
for which the method of the resolvent applies. Let :
s
(sst) = J K(s,x) K .(x,t)dx
‘n t m-1
(3.17) mz2
Kl(s,t) = K(s,t) sz20, t=20
An induction yields the following expression :
s
( ﬁ“(s,t) =G(t) JG(x__.) . (1~ F(s-x_.)).
m-1 m-1
g
dxm_1 d G(xm_z) {1 - F(xm_1 - xm_z)).

X
-2
(3.18) dx; o im e

. X
dx, iz Glxq) - (1= Flxy = %)) - (1= F(x,=1))dx,.

In this case, the solution of (3.16) always exists, is unique and is given by
(see [Mi 571) :

(3.19) (s} = f(s) + ; X
s+0 m=1

S
M7 K (s.t) F(t)dt
0

The results of section II1.2.1. yield the following : when pG(») < 1 : we have ne-

cessarily V(0} > 0 and J wv(s) + V(o) = 1 (equation (3.14}), so that the unknown
0

constant V(p) 1is

(3.20) V(o) = (1+ 7 u(s) ds)~]
0

I11.4.3. Resolution for M/GI/l+Er

The following results are directly obtained from the preceding section. The M/G/1
queue with Erlang (N,y) impatience distribution function always has a steady state
and the L.S. transform of the stationary v.o.w.t. distribution function is given
by :

¥(s) = V(0) 1+ a(s) = RY(s)]
=1 0
Re(s) = 0 .
J
where : R; = ET)

(3.21)

The assertions concernir
and from G(=) = 0. Thes
(3.19) or by self-iterat
assured because (3.7) is

111.4.4, Resolution for

The M/G/1 queue with ex;
has a steady and the L.!
given by :

p
y(s) =V

Re(s) =t

(3.22) with bib

Furtherm

V(o) =




moment of F, f(s) and
a Volterra equation

t))dxl.

and is given by

@) <1 : we have ne-

so that the unknown

section. The M/G/1
s has a steady state
function is given
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(m-1).(N-1)
R™(s) = L DM Lis) me2
(3‘21) J k=[j+1'N-]+ k kK, J

min (k,Jj) ke J-i
M) = ¢! alt* 1) (semy) %
R E S S EN M J-i)
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a(z)(r) denotes the f-th derivative of a(s) at point r, Re{r) 2 0.

V(O) =[1+o z RO
g=1

1

The assertions concerning stability are obtained from the results of section IIl.2

and from G(=) = 0. Theseries are obtained either by direct transformation of
(3.19) or by self-iteration of equation (3.5). The convergence of the series is
assured because (3.7) is satisfied.

111.4.4. Resolution for M/GI/14M

The M/G/1 queue with exponentially distributed impatience of parameter vy always
has a steady and the L.S. transform of the stationary distribution function is
given by :

/ o
b(s) = V(0) L1+ a(s) I by(s)]
1=)
Re(s) =20
i
(3.22) with b.(s) = J_rle a(s + jy)
Furthermore :
V(o) =f1+p % b(0)1!
\ i=1
0O

LT e e
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IV. ON M/M/m+GI QUEUES

IV.1. Introduction

For the m-servers case, we consider exponential service times and Poisson arrivals
(B(x) = 1~ e WX, A(x) =1 - e'AX). The system is defined as in section 2. Consi-

der the following process : {N(t), t e RY} s equal to n when the number of custo-
mers in the system at time t is nand 0 £ n = m-1. N(t) is equal to L when the
number of customers at time t is greater than m-1. The v.o.w.t. n{t), is equal to
zero when N(t) £ L and is strictly positive otherwise. Clearly, {{N(t), n(t)),

t ¢ R} is a Markov process with state space [ {0}, {1}, ..., {m-1}, L] x R". con-
sider the following functions (when they exist)

v(x) = Tim Tim PIN(t) = L, x < n{t) < x + dx]

(4.1) X2 0 tro dx>Q
P, = lim PIN(t) = i, n(t) = 01.
O<jsm-1 e

Kolmogorov's equations for (N, n) at steady state yield the following relations
between these functions :

XPO = uPl
(A + uj)Py = A5y + (3 + 1Py 0<j<ml

(4.2) V(0) = (A + (m-1)uP_, - W,
v(x) = AP

X
1emmx+Af Hu)v@)qu(k“Mu
x>0 m 0

WYe obtain from this :7

Syl - )
{ Pj (u) 3790 i=0, ...,m1

(4.3)
v(0) = Apm—l
Furthermore, H(x) = eMX v(x) is the solution of the following equation :
X
{ H(x) = AP 4 + A J G(u) H(u) du
x>0 0

which yields :
(4.4) v(x)

ft

X
Apm-l exp {A é G{u)du - mux}.

The normalizing condition is :

m-1 3
(4.5) I P.+ [ v{x)dx = 1.

=09 0
That is : 5

= A am-1 1 -1 ‘
s {PO 0[01+u+.>.<.+(u) TRTTT .(1+>\J)]
-©) J= 1 oexplh 7 (G(u) - Bydu)
0 0

S, RIS

For stability, one can che
integral in (4.6} converges

(4.7) AG(w) < mu

Lastly, the result of secti
queue.

V. PROBABILITY OF REJECTIOM

V.1. Single server gueues

In this section, we derive
rest. Let Il be the probabi’
bability that an arriving
queues we have :

5.1) n= f (1
( -

where W(x) is the limiting
the M/GI/1+GI case, we obt

]

(5.2) = é v(x)

From (3.5) we get, fors =
1 = V(0) +

Thus

(5.3) (1 -m)p =1

It is interesting to compe
queue with a limited capac

(1 - pN)p :
(In this system PN is the

We now derive some relatit
Little's formula applies
points for all of the def

time spent in the gueue b;
customers in the queue. F

the mean time spent in qu
out, the impatient ones,
number of customers in th

For GI/GI/1+GI, we have :

(5.4) By =/ X

(5.5) Wy =/

O 8O

Let v be the first moment




times and Poisson arrivals
'd as in section 2. Consi-

x.when the number of custo-
is equal to L when the
o.w.t. n(t), is equal to
Tearly, {(N(t), n(t)),

ey =1}, L7 xR*. Con-

+ dx]

1 the following relations
J<m-1

u)du

owing equation :

K= /9@7{?%@
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For stability, one can check that the normalization is possible if and only if the
integral in (4.6) converges, which is equivalent to the condition :

(4.7) MG (®) < my

Lastly, the result of section III.3. can be extended to the considered multi server
queue.

V. PROBABILITY OF REJECTION, MEAN VALUES

V.1. Single server queues

In this section, we derive further relations between quantities of practical inte-
rest., Let 1T be the probability of rejection of customers at steady, i.e., the pro-
bability that an arriving customer decides not to enter the system. For GI/GI/I+GI
queues we have :

(5.1) M= J (1-0G{u))dd{u)

o-
where W(x) is the limiting distribution of wn which exists when 0 < 1 - pG(«). In
the M/GI/14G] case, we obtain from the result of section IIl.3. and IIl.4.1, :

(5.2) M= ? v(x) [1 - G(x)] dx
0

From (3.5) we get, for s = 0 :
1=V(0) +p ? v(x) G(x)} dx
Thus : °
(5.3) (1-mp =1 - V(o) Li Wf
It is interesting to compare this relation with the one obtained for the M/G/1
queue with a Timited capacity N :
(1-Po=1-P v
(In this system Py is the probability of rejection).
We now derive some relations between mean waiting time and mean queue length,

+
Little's formula applies (since the beginning of busy periods are regeneration ’l,mﬁﬁ
points for all of the defined stochastic processes). Let W, be the mean waiting jZﬁ?ﬁ?"

time spent in the queue by patient customers and El be the mean number of patient B(ALM24
customers in the queue. For the case d) (defined in the introduction), let WZ be

the mean time spent in queue by all customers (those rejected after their time
out, the impatient ones, and those served the patient ones), and [2 be the mean

number of customers in the queue. )
o [ k/</?7

For GI/GI/1+GI, we have :

S

E[w;wer]

(5.4) W= 7 X G(x) dH(x) TP
(5.5) =/ di(u) / G(t)dt - = E[W/‘ R =fg[‘uAR] d W =
0 0 0

Let y be the first moment of C(x). We get for instance Wz = Wl + ynl6@r GI/GI/1+D
U

Y= - Clo o - f G o

L C

0
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and WZ = yIl for GI/GI/1+M. We also obtain from Little's formula :

(5.6) [1 = A(1 - 1) Wl

(5.7) L, = AW,

Consider now Vv, the mean v.o.w.t. in the M/GI/14GI case
V= S xv(x) dx

Differentiating equation (3.5) at point s = 0 yields :

- oo 2.
(5.8) Vo= o+ 5 (1-m Ersh

which is a Pollaczek-Khinchin mean value formula for queues with impatient custo-
mers.

V.2. Multi server queues

For the queueing system of section IV, we get :

m-1

= . m -
(5.9) m=(1-3)0 jZO P+ R
The equivalent of relation (5.8) is :
(5.10) V=R e Loy, where vio) 2 T2 b
. m oYt [ » where V(0) = j;O 5
For M/M/m+D, we obtain the following :

(o . "ok, o (A-ma)y _ o1
PO =[1+ kio p/k! + TomyaT (pe - m)]
m

Il = %T PO exp(A - mu)y
(5.11) 4

o o" m/u XY=y

Wl = PO “wT  oom {1 Hyp(p~m) - 1le }

N2 = wl + vH
‘ \.
For M/M/m+M, Tet o = —— . We have : 0(:“—‘&

’ vy ’ W/‘
m-1 _— /m -1
Po={l+o+...p /(m-1)5+§.r(1+%;&+...)
m-1

(5.12) T=p L1+ (-1 +80my

0 (m-1)1 m I+a

Wz = yI1 ih‘dljék ' ;f}’ = é; va;@

VI. APPLICATION TO THE MODELLING OF A TELECOMMUNICATION SYSTEM

We consider the behaviour of customers and operators in a PABX : In such a system,
operators receive calls from the public network, and switch these calls to the
appropriate called subscriber. Thus, from the telephone network, a PABX can be

seen as a GI/GI/m queueincg
customers waiting in the g
used is our GI/GI/m+GI que
calling and called subscri
of it), and also for teler
the demand using resources

Some measurements, perfory

the impatience distributic
1 may be found in [ROB 79]

Pr(st)

10

C9Zf = (\72;@

@/Q/? :,/'l-/\u/



mula :

i with impatient custo-

BX : In such a system,
these calls to the
work, a PABX can be
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seen as a GI/GI/m queueing system, m being the number of operators. In fact, calling
customers waiting in the queue can leave impatiently. Hence the real model to be

used is our GI/GI/m+GI queue. The phenomenon can be of great importance, for both
calling and called subscribers (these Tast cannot be reached, without beeing aware

of it), and also for telephone administrations (the network successfully routes

the demand using resources for this, but an unanswered call gives rise to no revenue).

Some measurements, performed on various PABX'S have shown that, for such a system,
the impatience distribution (1-G(t)) is approximately Erlang-3 (the curve in Figure
1 may be found in [ROB 791).

Pr(st)
&
1.
— o —
Er1-3 =
Observed
7
4
7
/4
5. | 7
/4
4 4
/
3 4
4
4
4
1 4/
+ " N . N . i i & t(s)
10 50 100

Estimated customers patience d.f.,
fitted with Erl-3

Figure 1
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Accordingly, we take :
2
G(t) = AN §~+ 3;25,9 = 17 sec.
28

Assuming Poisson arrivals and exponentially distributed service for the system,
we can then use the results of Section 4 (eq 4.4)
m-1 X
-3 P -
w{x) = A T PO Exp {X é G(u)du - mux}
o1 3L 2 -y
PO =[1+p+ ... TE:TTT'(l + Le é Exp {-(3+2u+u“/2)Le " +
-1
+ bmu/p du)l]

with p = X/u,L = X0

In Figures 2 and 3, we plot T (probability of rejection), V (0), probability of no
waiting, and wz, mean waiting time of all customers. The latter measures the 1n-

effective occupation of telephone lines. The curves show that a fast degradation
when p/m approaches 1 : For % = 0.8, m=2,v{0) = 0.6, the operators are not
overloaded but 11 = 0.25.

Oi




ed service for the system,

nux }

Exp {-(3+2uri’/2)Le™Y

ny, v (o), probability of no
he latter measures the in-

W that a fast degradation
v the operators are not
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m=1

ms=2

=3
m=5

/__

p/m

v

Evolution of 1 and (o) with o and m

Figure 2
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» O/

Mean waiting time (in units of service time)

Figure 3
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