
Service Engineering

Class 5

Fluid/Flow Models;

Models/Apparoximations, Empirical/Deterministic

• Introduction

• Scenario Analysis: Empirical Models + Simulation.

• Transportation: Predictable Variability.

• Fluid/Empirical models of Predictable Queues.

• Four “pictures”: rates, queues, outflows, cumulative graphs.

• Phases of Congestion.

• Examples: Peak load vs. peak congestion; EOQ; Aggregate

Planning.

• From Data to Models; Scales.

• Queueing Science.

• A fluid model of call centers with abandonment and retrials.

• Bottleneck Analysis, via National Cranberry Cooperative.

• Summary of the Fluid Paradigm.

1



Keywords: Blackboard Lecture

• Classes 1-4 = Introduction to Introduction:

On Services, Measurements, Models: Empirical, Stochastic.

Today, our first model of a Service Stations: Fluid Models.

• Fluid Model vs. Approximation

• Model: Fluid/Flow, Deterministic/Empirical; eg. EOQ.

• Conceptualize: busy highway around a large airport at night.

• Types of queues: Perpetural, Predictable, Stochastic.

• On Variability: Predictable vs. Stochastic (Natural/Artificial).

• Scenario Analysis vs. Averaging, Steady-State.

• Descriptive Model (Inside the Black Box), via 4 “pictures”:

rates, queues, outflows, cummulants.

• Mathematical Model (Black Box), via differential equations.

• Resolution/Units (Scales).

• Applications:

– Phenomena:

Peaks (load vs. congestion); Calmness after a storm;

– Managerial Support:

Staffing (Recitation); Bottlenecks (Cranberries)

• Bottlenecks.
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Types of Queues

• Perpetual Queues: every customers waits.

– Examples: public services (courts), field-services, oper-

ating rooms, . . .

– How to cope: reduce arrival (rates), increase service ca-

pacity, reservations (if feasible), . . .

– Models: fluid models.

• Predictable Queues: arrival rate exceeds service capacity

during predictable time-periods.

– Examples: Traffic jams, restaurants during peak hours,

accountants at year’s end, popular concerts, airports (se-

curity checks, check-in, customs) . . .

– How to cope: capacity (staffing) allocation, overlapping

shifts during peak hours, flexible working hours, . . .

– Models: fluid models, stochastic models.

• Stochastic Queues: number-arrivals exceeds servers’ ca-

pacity during stochastic (random) periods.

– Examples: supermarkets, telephone services, bank-branches,

emergency-departments, . . .

– How to cope: dynamic staffing, information (e.g. reallo-

cate servers), standardization (reducing std.: in arrivals,

via reservations; in services, via TQM) ,. . .

– Models: stochastic queueing models.
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Economist.com

Crowded airports  
 
Landing flap 
Apr 4th 2007  
From The Economist print edition
 
 

Rex

 
A tussle over Heathrow threatens a longstanding monopoly 

TO DEATH and taxes, one can now add jostling queues of frustrated travellers at 
Heathrow as one of life's unhappy certainties. Stephen Nelson, the chief executive of 
BAA, which owns the airport, does little to inspire confidence that those passing 
through his domain this Easter weekend will avoid the fate of the thousands stranded 
in tents by fog before Christmas or trapped in twisting lines by a security scare in the 
summer. In the Financial Times on April 2nd he wrote of the difficulties of managing 
“huge passenger demand on our creaking transport infrastructure”, and gave warning 
that “the elements can upset the best laid plans”.

Blaming the heavens for chaos that has yet to ensue may be good public relations but 
Mr Nelson's real worries have a more earthly origin. On March 30th two regulators 
released reports on his firm, one threatening to cut its profits and the other to break it 
up. First the Civil Aviation Authority (CAA), which oversees airport fees, said it was 
thinking of reducing the returns that BAA is allowed to earn from Heathrow and 
Gatwick airports. Separately the Office of Fair Trading (OFT) asked the Competition 
Commission to investigate BAA's market dominance. As well as Heathrow, Europe's 
main gateway on the transatlantic air route, BAA owns its two principal London 
competitors, Gatwick and Stansted, and several other airports. 

http://www.economist.com/world/britain/PrinterFriendly.cfm?story_id=8966398
 (1 of 3)4/9/2007 5:30:10 PM
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The “Fluid View”

or Flow Models of Service Networks

Service Engineering (Science, Management)

December, 2006

1 Predictable Variability in Time-Varying Services

Time-varying demand and time-varying capacity are common-place in service operations. Some-
times, predictable variability (eg. peak demand of about 1250 calls on Mondays between 10:00-
10:30, on a regular basis) dominates stochastic variability (i.e. random fluctuations around the
1250 demand level). In such cases, it is useful to model the service system as a deterministic fluid
model, which transportation engineers standardly practice. We shall study such fluid models, which
will provide us with our first mathematical model of a service-station.

A common practice in many service operations, notably call centers and hospitals, is to time-
vary staffing in response to time-varying demand. We shall be using fluid-models to help determine
time-varying staffing levels that adhere to some pre-determined criterion. One such criterion is
“minimize costs of staffing plus the cost of poor service-quality”, as will be described in our fluid-
classes.

Another criterion, which is more subtle, strives for time-stable performance in the face of time-
varying demand. We shall accommodate this criterion in the future (in the context of what will
be called “the square-root rule” for staffing). For now, let me just say that the analysis of this
criterion helped me also understand a phenomenon that has frustrated me over many years, which
I summarize as “The Right Answer for the Wrong Reasons”, namely: how come so many call
centers enjoy a rather acceptable and often good performance, despite the fact that their managers
noticeably lack any “stochastic” understanding (in other words, they are using a “Fluid-View” of
their systems).

2 Fluid/Flow Models of Service Networks

We have discussed why it is natural to view a service network as a queueing network. Prevalent
models of the latter are stochastic (random), in that they acknowledge uncertainty as being a central
characteristic. It turned out, however, that viewing a queueing network through a “deterministic
eye”, animating it as a fluid network, is often appropriate and useful. For example, the Fluid View
often suffices for bottleneck (capacity) analysis (the “Can we do it?” step, which is the first step
in analyzing a dynamic stochastic network); for motivating congestion laws (eg. Little’s Law, or
”Why peak congestion lags behind peak load”); and for devising (first-cut) staffing levels (which
are sometime last-cut as well).
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Some illuminating “Fluid” quotes:

• ”Reducing letter delays in post-offices”: ”Variation in mail flow are not so much due to random
fluctuations about a known mean as they are time-variations in the mean itself . . . Major con-
tributor to letter delay within a postoffice is the shape of the input flow rate: about 70% of all
letter mail enters a post office within 4-hour period”. (From Oliver and Samuel, a classical 1962
OR paper).

• ” . . . a busy freeway toll plaza may have 8000 arrivals per hour, which would provide a coefficient
of variation of just 0.011 for 1 hour. This means that a non-stationary Poisson arrivals pattern
can be accurately approximated with a deterministic model”. (Hall’s textbook, pages 187-8).
Note: the statement is based on a Poisson model, in which mean = variance.

There is a rich body of literature on Fluid Models. It originates in many sources, it takes many
forms, and it is powerful when used properly. For example, the classical EOQ model takes a fluid
view of an inventory system, and physicists have been analyzing macroscopic models for decades.
Not surprisingly, however, the first explicit and influential advocate of the Fluid View to queueing
systems is a Transportation Engineer (Gordon Newell, mentioned previously). To understand why
this view was natural to Newell, just envision an airplane that is landing in an airport of a large
city, at night - the view, in rush-hour, of the network of highways that surrounds the airport, as
seen from the airplane, is precisely this fluid-view. (The influence of Newel1 is clear in Hall’s book.)

Some main advantages of fluid-models, as I perceive them, are:

• They are simple (intuitive) to formulate, fit (empirically) and analyze (elementary). (See the
Homework on Empirical Models.)

• They cover a broad spectrum of features, relatively effortlessly.

• Often, they are all that is needed, for example in analyzing capacity, bottlenecks or utilization
profiles (as in National Cranberries Cooperative and HW2).

• They provide useful approximations that support both performance analysis and control. (The
approximations are formalized as first-order deterministic fluid limits, via Functional (Strong)
Laws of Large Numbers.)

Fluid models are intimately related to Empirical Models, which are created directly from mea-
surements. As such, they constitute a natural first step in modeling a service network. Indeed,
refining a fluid model of a service-station with the outcomes of Work (Time and Motion) Studies
(classical Industrial Engineering), captured in terms of say histograms, gives rise to a (stochastic)
model of that service station.
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Contents

• Scenario Analysis: Empirical Models + Simulation.

• Transportation: Predictable Variability.

• Fluid/Empirical models of Predictable Queues.

• Four “pictures”: rates, queues, outflows, cumulative

graphs.

• Phases of Congestion.

• Examples: Peak load vs. peak congestion; EOQ;

Aggregate Planning.

• From Data to Models; Scales.

• Queueing Science.

• A fluid model of call centers with abandonment and

retrials.

• Bottleneck Analysis, via National Cranberry Coop-

erative.

• Summary of the Fluid Paradigm.
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Conceptual Fluid Model

Customers/units are modeled by fluid (continuous) flow.

Labor-day Queueing at Niagara Falls

Labor-Day Queueing in Niagara Falls
Three-station Tandem Network:
Elevators, Coats, Boats

Total wait of 15 minutes
from upper-right corner to boat  

How? “Deterministic” constant motion

• Appropriate when predictable variability prevalent;

• Useful first-order models/approximations, often suffice;

• Rigorously justifiable via Functional Strong Laws of Large

Numbers.
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Empirical Fluid Model: Queue-Length at a Bank Queue
Catastrophic/Heavy/Regular Day(s)

Bank Queue 
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Arrivals to queue
 September 2001
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Arrivals to queue
 September 2001
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Predicting Emergency Department Status
Houyuan Jiang‡, Lam Phuong Lam†, Bowie Owens†, David Sier† and Mark Westcott†

† CSIRO Mathematical and Information Sciences, Private Bag 10,
South Clayton MDC, Victoria 3169, Australia

‡ The Judge Institute of Management, University of Cambridge,
Trumpington Street, Cambridge CB2 1AG, UK

Abstract
Many acute hospitals in Australia experience frequent episodes of ambulance bypass.
An important part of managing bypass is the ability to determine the likelihood of it
occurring in the near future.

We describe the implementation of a computer program designed to forecast the
likelihood of bypass. The forecasting system is designed to be used in an Emergency
Department. In such an operational environment, the focus of the clinicians is on
treating patients, there is no time carry out any analysis of the historical data to be used
for forecasting, or to determine and apply an appropriate smoothing method.

The method is designed to automate the short term prediction of patient arrivals. It
uses a multi-stage data aggregation scheme to deal with problems that may arise from
limited arrival observations, an analysis phase to determine the existence of trends and
seasonality, and an optimisation phase to determine the most appropriate smoothing
method and the optimal parameters for this method.

The arrival forecasts for future time periods are used in conjunction with a simple
demand modelling method based on a revised stationary independent period by period
approximation queueing algorithm to determine the staff levels needed to service the
likely arrivals and then determines a probability of bypass based on a comparison of
required and available resources.

1 Introduction
This paper describes a system designed to be part of the process for managing Emergency Depart-
ment (ED) bypass. An ED is on bypass when it has to turn away ambulances, typically because all
cubicles are full and there is no opportunity to move patients to other beds in the hospital, or because
the clinicians on duty are fully occupied dealing with critical patients who require individual care.

Bypass management is part of the more general bed management and admission–discharge
procedures in a hospital. However, a very important part of determining the likelihood of bypass
occurring in the near future, typically the next 1, 4 or 8 hours, is the ability to predict the probable
patient arrivals, and then, given the current workload and staff levels, the probability that there will
be sufficient resources to deal with these arrivals.

Here, we consider the implementation of a multi-stage forecasting method [1] to predict patient
arrivals, and a demand management queueing method [2], to assess the likelihood of ED bypass.

The prototype computer program implementing the method has been designed to run on a hospital
intranet and to extract patient arrival data from hospital patient admission and ED databases.
The program incorporates a range of exponential smoothing procedures. A user can specify the
particular smoothing procedure for a data set or to configure the program to automatically determine
the best procedure from those available and then use that method.

For the results presented here, we configured the program to automatically find the best smoothing
method since this is the way it is likely to be used in an ED where the staff are more concerned
with treating patients than configuring forecast smoothing parameters.
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(c) Average weekly

Figure 1: Hourly patient arrivals, June 2001 to July 2002

For the optimisation we assume no a priori knowledge of the patient arrival patterns. The process
involves simply fitting each of the nine different methods listed in Table 1 to the data, using the mean
square fitting error, calculated using (3), as the objective function. The smoothing parameters for
each method are all in (0, 1) and the parameter solution space is defined by a set of values obtained
from an appropriately fine uniform discretization of this interval. The optimal values for each
method are then obtained from a search of all possible combinations of the parameter values.



From the data aggregated at a daily level, repeat the procedure to extract data for each
hour of the day to form 24 time series (12am–1am, 1am–2am, . . ., 11pm–12am). Apply the
selected smoothing method, or the optimisation algorithm, to each time series and generate
forecasting data for those future times of day within the requested forecast horizon. The
forecast data generated for each time of day are scaled uniformly in each day in order to
match the forecasts generated from the previously scaled daily data.

Output: Display the historical and forecasted data for each of the sets of aggregated observations
constructed during the initialisation phase.

The generalisation of these stages is straightforward. For example, if the data was aggregated to a
four-weekly (monthly) level, then the first scaling step would be to extract the observations from
the weekly data to form four time series, corresponding to the first, second, third and fourth week
of each month. Historical data at timescales of less than one day are scaled to the daily forecasts.
For example, observations at a half-hourly timescale are used to form 48 time series for scaling to
the day forecasts.

4.3 Output from the multi-stage method
Figures 2 and 3 show some of the results obtained from using the multi-stage forecasting method to
predict ED arrivals using the 60 weeks of patient arrival data described in Section3. The forecasted
data were generated from an optimisation that used the multi-stage forecasting method to minimise
the residuals of (3) across all the smoothing methods in Table 1.
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Figure 2: Hourly historical and forecasted data 25/7/2002–31/7/2002
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Q-Science: Predictable Variability

Q-Science 
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Arrivals to Service

Arrivals to a Call Center (1999): Time Scale
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Arrivals Process, in 1976
 

Arrival Process, in 1976 
 
 
 (E. S. Buffa, M. J. Cosgrove, and B. J. Luce,  

 “An Integrated Work Shift Scheduling System”) 
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Custom Inspections at an Airport 

 
Number of Checks Made During 1993:        

 
 

Number of Checks Made in November 1993:  

 

Average Number of Checks During the Day: 

 
Source: Ben-Gurion Airport Custom Inspectors Division 
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Fluid Models and Empirical Models

Recall Empirical Models, cumulative arrivals and

departure functions.

Service Engineering November 23, 2005

Recitation 4 - Fluid Models. Staffing

The Cumulative Arrivals and Departures functions are step functions.
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This suggests that our empirical model can be well approximated by a

deterministic fluid model.
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For large systems (bird’s eye) the functions look smoother.
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Empirical Models: Fluid, Flow

Derived directly from event-based (call-by-call) measurements. For

example, an isolated service-station:

• A(t) = cumulative # arrivals from time 0 to time t;

• D(t) = cumulative # departures from system during [0, t];

• L(t) = A(T )−D(t) = # customers in system at t.

Arrivals and Departures from a Bank Branch

Face-to-Face Service
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When is it possible to calculate waiting time in this way?
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Fluid Models: General Setup

• A(t) – cumulative arrivals function.

• D(t) – cumulative departures function.

• λ(t) = Ȧ(t) – arrival rate.

• δ(t) = Ḋ(t) – processing (departure) rate.

• c(t) – maximal potential processing rate.

• Q(t) – total amount in the system.

Queueing System as a Tub (Hall, p.188)

Service Engineering November 23, 2005

Recitation 4 - Fluid Models. Staffing

The Cumulative Arrivals and Departures functions are step functions.
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Mathematical Fluid Models

Differential Equations:

• λ(t) – arrival rate at time t ∈ [0, T ].

• c(t) – maximal potential processing rate.

• δ(t) – effective processing (departure) rate.

• Q(t) – total amount in the system.

Then Q(t) is a solution of

Q̇(t) = λ(t)− δ(t); Q(0) = q0, t ∈ [0, T ] .

In a Call Center Setting (no abandonment)

N(t) statistically-identical servers, each with service rate µ.

c(t) = µN(t): maximal potential processing rate.

δ(t) = µ ·min(N(t), Q(t)): processing rate.

Q̇(t) = λ(t)− µ ·min(N(t), Q(t)), Q(0) = q0, t ∈ [0, T ] .

How to actually solve? Mathematics (theory, numerical),

or simply: Start with t0 = 0, Q(t0) = q0.

Then, for tn = tn−1 + ∆t:

Q(tn) = Q(tn−1) + λ(tn−1) ·∆t− µ min(N(tn−1), Q(tn−1)) ·∆t .
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Predictable Queues

Fluid Models and
Diffusion Approximations

for Time-Varying Queues with

Abandonment and Retrials

with

Bill Massey

Marty Reiman

Brian Rider

Sasha Stolyar
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Sudden Rush Hour

n = 50 servers; µ = 1

λt = 110 for 9 ≤ t ≤ 11, λt = 10 otherwise
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Time-Varying Queues with
Abandonment and Retrials

Based on a series of papers with Massey, Reiman, Rider

and Stolyar (all at Bell Labs, at the time).

Call Center: a Multiserver Queue with

Abandonment and Retrials

Call Center: A Multiserver Queue with

Abandonment and Retrials

Q1(t)

βt ψt ( Q1(t) − nt )
+

βt (1−ψt) ( Q1(t) − nt )
+

λt 2

Q2(t)

21 8. . .

nt

1

.

.

.

µt Q2(t)2
µt (Q1(t)    nt) 

1

3
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Primitives: Time-Varying
Predictably

λt exogenous arrival rate;
e.g., continuously changing, sudden peak.

µ1
t service rate;

e.g., change in nature of work or fatigue.

nt number of servers;
e.g., in response to predictably varying workload.

Q1(t) number of customers within call center
(queue+service).

βt abandonment rate while waiting;
e.g., in response to IVR discouragement
at predictable overloading.

ψt probability of no retrial.

µ2
t retrial rate;

if constant, 1/µ2 – average time to retry.

Q2(t) number of customers that will retry (in orbit).

In our examples, we vary λt only, while other primitives

are held constant.
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Fluid Model

Replacing random processes by their rates yields

Q(0)(t) = (Q(0)
1 (t), Q(0)

2 (t))

Solution to nonlinear differential balance equations

d

dt
Q(0)

1 (t) = λt − µ1
t (Q(0)

1 (t) ∧ nt)

+µ2
t Q(0)

2 (t)− βt (Q(0)
1 (t)− nt)

+

d

dt
Q(0)

2 (t) = β1(1− ψt)(Q
(0)
1 (t)− nt)

+

− µ2
t Q(0)

2 (t)

Justification: Functional Strong Law of Large Numbers ,

with λt → ηλt, nt → ηnt.

As η ↑ ∞,

1

η
Qη(t) → Q(0)(t) , uniformly on compacts, a.s.

given convergence at t = 0
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Diffusion Refinement

Qη(t)
d
= η Q(0)(t) +

√
η Q(1)(t) + o (

√
η )

Justification: Functional Central Limit Theorem

√
η

[
1

η
Qη(t)−Q(0)(t)

]
d→ Q(1)(t), in D[0,∞) ,

given convergence at t = 0.

Q(1) solution to stochastic differential equation.

If the set of critical times {t ≥ 0 : Q(0)
1 (t) = nt} has Lebesque

measure zero, then Q(1) is a Gaussian process. In this case, one

can deduce ordinary differential equations for

EQ(1)
i (t) , Var Q(1)

i (t) : confidence envelopes

These ode’s are easily solved numerically (in a spreadsheet, via for-

ward differences).
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Starting Empty and Approaching Stationarity
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Quadratic Arrival rate

Assume λ(t) = 10 + 20t− t2.

Take P{retrial} = 0.5, β = 0.25 and 1.
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Sudden Rush Hour

n = 50 servers; µ = 1

λt = 110 for 9 ≤ t ≤ 11, λt = 10 otherwise
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What if Pr{Retrial } increases to 0.75 from 0.25 ?
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We develop and analyze a queueing model, which we call Erlang-R, where the “R” stands for ReEntrant
customers. It accommodates customers who return to service several times during their sojourn within the
system. The modeling power of Erlang-R is most pronounced in time-varying environments. Indeed, it was
motivated by healthcare systems, in which workloads are time-inhomogeneous and patients often go through
a discontinuous service process. Erlang-R is essentially a 2-station open queueing network. It helps questions
such as how many servers (doctors/nurses) are required in order to achieve predetermined service levels.

We develop expressions for service level measures showing that, in steady state, the system’s behavior
is captured by an Erlang-C (M/M/S) model. When considering time-varying environments, however, our
system behaves very differently. Here one must take into account the discontinuous nature of service, in
order to avoid excessive staffing costs or undesirable service levels.

Based on our theory, we propose a staffing policy in the Halfin-Whitt (QED) regime, which turns relevant
for healthcare. This policy applies the Modified Offered Load approximation. It is validated via simulation,
both for large and small systems. In particular, we use a detailed simulation of an Emergency Ward (EW)
to validate its usefulness in realistic scenarios.

Key words : Health Care; Queueing Networks; Modified Offered Load; Time Varying Queues; Halfin-Whitt
Regime; QED Regime; Emergency Department Staffing

1. Introduction: The Erlang-R Model
It is natural and customary to use queueing models in support of workforce management. Most

common are the Erlang-C (M/M/s), Erlang-B (M/M/s/s) and Erlang-A (M/M/s + M) models, all

used in call centers. But when considering healthcare environments, we find that these models lack

a central prevalent feature, namely, that customers might return to service several times during

their sojourn within the system. Therefore, the service offered has a discontinuous nature, as it is

not provided at one time. This has motivated our queueing model, Erlang-R (“R” for ReEntrant

customers) which accommodates the return-to-service phenomena.

More explicitly, we consider a model where customers seek service from servers. After service

is completed, with probability 1− p they exit the system and with probability p they return for

further service after a random delay time. We refer to the service phase as a Needy state, and to

the delay phase as a Content state (following Jennings and de Véricourt (2008)). Thus, during

their stay in the system, customers start in a Needy state and then alternate between Needy and

Content states. We assume that there are s servers in the system. When customers become Needy

and an idle server is available, they are immediately treated by a server. Otherwise, customers wait

in queue for an available server. The queueing policy is FCFS (First Come First Served).

We assume that the Needy service times are independent and identically distributed (i.i.d.),

with general distribution G1 and mean 1
µ
, and that the Content times are also i.i.d. with general

distribution G2 and mean 1
δ
. We also assume that the Needy and Content times are independent

of each other and of the arrival process. The arrival process is taken to be a time-inhomogeneous

Poisson process with rate λt, t≥ 0. Some of our results require that the Needy and Content times

are exponentially distributed. We shall state specifically when this is the case.

Figure 1 displays our system schematically.
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Erlang-R: 
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Figure 1 The Erlang-R Queuing Model

1.1. Examples in Healthcare
We now describe a few examples where the Erlang-R model is applicable in hospitals. The first
example presents the process of doctor service (or nurse service) in an Emergency Ward (EW).
The main steps of this complex process, shown in Figure 2 (Marmor and Sinreich 2005), are as
follows: Patients enter the EW, and are referred to a doctor. The doctor examines them, and
decides whether to send them home or to admit them to the hospital. In most cases, the decision
is made after the patient goes through a series of medical tests. Thus, the process that a patient
goes through, from the doctor’s perspective, fits our model. A patient visiting the doctor is in a
Needy state. Between each visit, the patient is considered to be in a Content state, which represents
the delay caused by undergoing medical tests such as X-rays, blood tests, and examinations by
specialist. After each visit to the doctor, a decision is made to release the patient from the EW
(either to his/her home or to the hospital), or to direct the patient to additional tests. We shall
see later, in Section 6, that the simple Erlang-R model captures the essence of the EW process,
enough to render it useful for applications.

A second example is the Radiology reviewing process (Lahiri and Seidmann 2009). After a
mammography test, the radiologist interprets the results. This includes several stages: examining
referral requisition, reviewing clinical background information, analyzing images, and dictating
results. In some cases, part of the information on the patient is lacking: the radiologist does examine
the case but it must be put on hold, waiting for this additional information to arrive; after arrival,
the reviewing process starts again. With radiologists being the servers, this can be modeled using
our Needy-Content cycle.

The third example is a hospital that accommodates a Mass Casualty Event (MCE). More specifi-
cally, in Chemical MCE there are protocols of reentrant services - every T minutes the patient must
be monitored and get an injection, where T depends on the severity of the damage. For example,
in a large MCE exercise conducted in Israel, the patients were triaged to 4 levels of severity. The
most harmed patients needed treatment every 10 minutes, while the second level every 30 minutes.
As part of this research, we have participated in a big exercise that simulated such casualty. We
use data collected from that exercise. We will show in Section 7.2, that our Erlang-R model can
forecast the number of patients treated in the hospital during such casualty.

The final example is the process of bed management in an Oncology Ward. In such a medical
ward, patients return for hospitalization and treatment, much more frequently than in regular
wards. Here servers are the beds, the Needy state models the times when a patient is in the hospital,
and the Content state models the times when the patient is at home. A patient leaves the system
when cured or unfortunately passes away.

While our focus here is on healthcare, Erlang-R is relevant to other environments as well, for
example, call center customers who return for an additional service (Khudyakov et al. 2010). Note
that our reentrant customers differ from what is traditionally referred to as retrial customers in
queueing theory (redials in call centers): the latter leave the system prior to service, in response
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and the number of nurses grow together to infinity, i.e. scaled up by η, but leave the Needy and
Content rates unscaled:

Qη
1(t) =Qη

1(0) +Aa1

(∫ t

0

ηλudu

)
−Ad2

(∫ t

0

pµ (Qη
1(u)∧ ηsu)du

)
−A12

(∫ t

0

(1− p)µ (Qη
1(u)∧ ηsu)du

)
+A21

(∫ t

0

δQη
2(u)du

)
=Qη

1(0) +Aa1

(∫ t

0

ηλudu

)
−Ad2

(∫ t

0

ηpµ

(
1

η
Qη

1(u)∧ su
)
du

)
−A12

(∫ t

0

η(1− p)µ
(

1

η
Qη

1(u)∧ su
)
du

)
+A21

(∫ t

0

ηδ

(
1

η
Qη

2(u)

)
du

)
,

Qη
2(t) =Qη

2(0) +A12

(∫ t

0

pµ (Qη
1(u)∧ ηsu)du

)
−A21

(∫ t

0

δQη
2(u)du

)
=Qη

2(0) +A12

(∫ t

0

ηpµ

(
1

η
Qη

1(u)∧ su
)
du

)
−A21

(∫ t

0

ηδ

(
1

η
Qη

2(u)

)
du

)
.

(12)

Theorem 7. (FSLLN) Using the scaling of (12), we have

lim
η→∞

Qη(t)

η
=Q(0)(t) a.s.,

where Q(0)(t) is called the fluid approximation and is the solution of the following ODE:

Q
(0)
1 (t) =Q

(0)
1 (0) +

∫ t

0

(
λu−µ

(
Q

(0)
1 (u)∧ su

)
+ δQ

(0)
2 (u)

)
du

Q
(0)
2 (t) =Q

(0)
2 (0) +

∫ t

0

(
pµ
(
Q

(0)
1 (u)∧ su

)
− δQ(0)

2 (u)
)
du.

(13)

This is based on Theorem 2.2 in (Mandelbaum et al. 1998).
We continue by developing the diffusion limits of the Erlang-R model. These diffusion limits will

be used to develop variance and covariance phrases that enable us to develop statistical boundaries
for the number of patients in the system. The fluid and diffusion processes can be used in order to
analyze mass-casualty events as well as other time-varying scenarios, as demonstrated in Section
7.2.

Theorem 8. (FCLT) Using the scaling of (12), and the fluid limits (13) we have

lim
η→∞

√
η

[
Qη(t)

η
−Q(0)(t)

]
d
=Q(1)(t), (14)

where Q(1)(t) is called the diffusion approximation and is the solution of the following SDE (Stochas-
tic Differential Equation):

Q
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∫ t
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(15)
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effect of such an event on the EW, and the time it takes to overcome such an emergency situation,
using the models developed in the previous section.

For this example, we used a set of data derived from a mass-casualty event exercise conducted
in Israel. The left diagram in Figure 24 shows data of arrival and departure data collected in that
two-hours exercise. We observe that the arrival rate is time-varying, there are time intervals with
no arrivals and time intervals with constant arrival rate. The latter is reducing from between the
time intervals. These are the arrival rates estimated from our data for each interval (customers per
minute):

λt =


0.86 if 0≤ t≤ 21,
0.76 if 42≤ t≤ 71,
0.5 if 100≤ t≤ 117,
0 otherwise,

Then we estimated the total LOS using a Kaplan-Mayor estimator, that take into account the
fact that many of our collected patients’s LOS data was censored; these data come from patients
that where still in treatment when the exercise stopped, therefore we have only lower bound for
their LOS and not complete information. The rest of the parameters needed to our Erlang-R model
were estimated using the medical procedure tested in that mass-casualty event. The treatment for
a chemical casualty in the severity tested in this event was to give medicine every half an hour,
while treating other injuries, the staffing requirement where that every doctor will take care for 4
patients at a time. Therefore, we estimated each treatment to be with average of 7.5 minutes and
evaluated p so that the average LOS of our model will be equal to the one estimated from the data.
Therefore, µ= 8, δ= 2.667, and p= 0.689.

0

10

20

30

40

50

60

11:02 11:16 11:31 11:45 12:00 12:14 12:28 12:43 12:57 13:12 13:26

To
ta

l N
u

m
b

e
r 

o
f 

P
at

ie
n

ts

Time

Cumulative Arrivals

Cumulative Departures

0

5

10

15

20

25

30

11:02 11:16 11:31 11:45 12:00 12:14 12:28 12:43 12:57 13:12 13:26

N
u

m
b

e
r 

o
f 

M
C

E 
P

at
ie

n
ts

 in
 E

D

Time

Actual Q(t)

Fluid Q(t)

Lower Envelope Q(t) (Theoretical)

Upper Envelope Q(t) (Theoretical)

(Arrival and Departures in MCE Exercise) (Erlang-R Approximations)
Figure 24 MCE Exercise: Arrival and Departures and Erlang-R Approximations

The right diagram in Figure 24 shows our fluid and diffusion approximations for Q(t) vs. one
sample pass derived from the exercise’s data. We see that that sample pass is within the stochastic
envelope. More examples that demonstrate the accuracy of our estimation can be found in the
Internet Supplement file.

This event illustrated a situation in which, during a very short period of two hours (11-13),
a large number of patients arrived to the EW. As a consequence, the number of patients in the
ED increase dramatically. One can derive from this model the time it will take the system to
stabilize again under different scenarios, without actually make an exercise for each one of them,
and without building a complex simulation.
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Types of Queues

• Perpetual Queues: every customers waits.

– Examples: public services (courts), field-services, oper-

ating rooms, . . .

– How to cope: reduce arrival (rates), increase service ca-

pacity, reservations (if feasible), . . .

– Models: fluid models.

• Predictable Queues: arrival rate exceeds service capacity

during predictable time-periods.

– Examples: Traffic jams, restaurants during peak hours,

accountants at year’s end, popular concerts, airports (se-

curity checks, check-in, customs) . . .

– How to cope: capacity (staffing) allocation, overlapping

shifts during peak hours, flexible working hours, . . .

– Models: fluid models, stochastic models.

• Stochastic Queues: number-arrivals exceeds servers’ ca-

pacity during stochastic (random) periods.

– Examples: supermarkets, telephone services, bank-branches,

emergency-departments, . . .

– How to cope: dynamic staffing, information (e.g. reallo-

cate servers), standardization (reducing std.: in arrivals,

via reservations; in services, via TQM) ,. . .

– Models: stochastic queueing models.
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Bottleneck Analysis

Inventory Build-up Diagrams, based on National Cranberry
(Recall EOQ,...) (Recall Burger-King) (in Reading Packet: Fluid Models)

A peak day: • 18,000 bbl’s (barrels of 100 lbs. each)
• 70% wet harvested (requires drying)
• Trucks arrive from 7:00 a.m., over 12 hours
• Processing starts at 11:00 a.m.
• Processing bottleneck: drying, at 600 bbl’s per hour

(Capacity = max. sustainable processing rate)

• Bin capacity for wet: 3200 bbl’s
• 75 bbl’s per truck (avg.)

- Draw inventory build-up diagrams of berries, arriving to RP1.

- Identify berries in bins; where are the rest? analyze it!
Q: Average wait of a truck?

- Process (bottleneck) analysis:

What if buy more bins? buy an additional dryer?

What if start processing at 7:00 a.m.?

Service analogy:

• front-office + back-office (banks, telephones)
↑ ↑

service production

• hospitals (operating rooms, recovery rooms)

• ports (inventory in ships; bottlenecks = unloading crews,router)

• More ?
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Stochastic Model of a
Basic Service Station

Building blocks:

• Arrivals

• Service durations (times)

• Customers’ (im)patience.

First study these building blocks one-by-one:

• Empirical analysis, which motivates

• Theoretical model(s).

Then integrate building blocks, via protocols, into Models.

The models support, for example,

• Staffing Workforce

• Routing Customers

• Scheduling Servers

• Matching Customers-Needs with Servers-Skills (SBR).

39


	Predictable_heathrow queues_Economist_April2007.pdf
	economist.com
	Economist.com


	from Predicting Emergency Department Status avishai.PDF
	1 Introduction
	2 Emergency Bypass
	2.1 Literature review

	3 Emergency Department arrival patterns
	4 Multi-stage forecasting
	4.1 Finding the best forecasting method
	4.1.1 Example: Holt's linear exponential smoothing

	4.2 Multi-stage forecasting
	4.3 Output from the multi-stage method

	5 Determining staffing levels
	5.1 Assumptions
	5.2 Performance measures
	5.3 Stationary queueing system
	5.4 Stationary independent period by period approximation (SIPP)
	5.5 Revised SIPP
	5.6 Determining ED bypass status

	6 Using the predictor, the web interface
	7 Conclusion

	from Predicting Emergency Department Status avishai.PDF
	2 Emergency Bypass
	2.1 Literature review

	3 Emergency Department arrival patterns
	4 Multi-stage forecasting
	4.1 Finding the best forecasting method
	4.1.1 Example: Holt's linear exponential smoothing

	4.2 Multi-stage forecasting

	5 Determining staffing levels
	5.1 Assumptions
	5.2 Performance measures
	5.3 Stationary queueing system
	5.4 Stationary independent period by period approximation (SIPP)
	5.5 Revised SIPP
	5.6 Determining ED bypass status

	6 Using the predictor, the web interface
	7 Conclusion

	1 Introduction
	2 Emergency Bypass
	2.1 Literature review

	3 Emergency Department arrival patterns
	4 Multi-stage forecasting
	4.1 Finding the best forecasting method
	4.1.1 Example: Holt's linear exponential smoothing

	4.2 Multi-stage forecasting
	4.3 Output from the multi-stage method

	5 Determining staffing levels
	5.1 Assumptions
	5.2 Performance measures
	5.3 Stationary queueing system
	5.4 Stationary independent period by period approximation (SIPP)
	5.5 Revised SIPP
	5.6 Determining ED bypass status

	6 Using the predictor, the web interface
	7 Conclusion
	Erlang_R_30_3_2011 from Galit PhD thesis.pdf
	Introduction: The Erlang-R Model
	Examples in Healthcare
	Contributions
	Main Results
	Outline

	Literature Review
	Staffing Problems in Hospitals
	The QED (Quality- and Efficiency-Driven) Regime
	Staffing Time-Varying Queues

	Steady-State Performance Measures
	The Offered Load
	Numerical Approximation of the Offered-Load Measure for General Arrival-Rate Functions with Exponential Service-Time Distribution
	Offered-Load Approximation for General Arrival-Rate Functions with General Service-Time Distribution
	Linear Arrival Rates Functions and First-Order Taylor-Series Approximations.
	Quadratic Arrival Rates Functions and Second-Order Taylor-Series Approximations.

	Analysis of special cases and Managerial Insights: The Offered-Load for Sinusoidal Arrival Rate
	Exponential Service Times
	Comparison to Erlang-C


	Validation of MOL Staffing
	Case Study 1 - Large System; Sinusoidal Arrival Rates; Exponential Service Times
	Approximating the Number of Needy Customers and Waiting Times in the QED Regime
	Comparison of Erlang-R, Erlang-C and PSA staffing

	Case Study 2 - Small System; Hospitals' Arrival Rates

	Using Erlang-R for Staffing EW Physicians: Fitting a Simple Model to a Complex Reality
	Approximating the Number of Needy Customers Using Fluid and Diffusion Limits and It's Application to Mass-Casualty Events
	Essentially Negligible Critical Regime and Applications to the Analysis of Mass-Casualty Events
	A Mass-Casualty Event Example

	Conclusions and Further Research




