

Service Engineering

Class 12

QED (QD, ED) Queues: Introduction

- Introduction to WFM and Staffing.
- Three Operational Regimes: ED, QD, QED.
- Some History of Square-Root Staffing:
 - Erlang (Erlang-B/C) - 1913/20's/40's;
 - Jagerman (Erlang-B) - 1970's;
 - Halfin-Whitt (Erlang-C) - 1981;
 - Garnett (Erlang-A) - Technion M.Sc. 2001;
 - Gurvich (V-Model; SBR) - Technion M.Sc., 2004; Columbia Ph.D., 2007.
 - Zeltyn (M/G/n + G) - Technion Ph.D., 2005;
 - Feldman (Predictable Queues) - Technion M.Sc., 2006-7.
- Some (Asymptotic) Theory.
- Asymptotic Framework/Analysis (Borst et al; Zeltyn 2006-7):
 - Optimization, Constraint Satisfaction;
 - Square-Root Staffing: Economics / Strategy (Pooling);
 - Scenarios.
- Uncertainty: Models (Robustness); Parameters (Forecasting).

Queueing Science: Data-Based QED's Q's

Traditional Queueing Theory predicts that **Service-Quality** and **Servers' Efficiency** must be traded off against each other.

For example, **M/M/1 in heavy-traffic**: **91%** server's utilization goes with

$$\text{Congestion Index} = \frac{E[\text{Wait}]}{E[\text{Service}]} = 10,$$

and only **9%** of the customers are served immediately upon arrival.

Yet, heavily-loaded queueing systems with **Congestion Index = 0.1** (Waiting one order of magnitude less than Service) are prevalent:

- ▶ **Call Centers**: Wait “**seconds**” for **minutes** service;
- ▶ **Transportation**: Search “**minutes**” for **hours** parking;
- ▶ **Hospitals**: Wait “**hours**” in ED for **days** hospitalization in IW's;

and, moreover, a significant fraction are not delayed in queue. (For example, in well-run call-centers, **50%** served “immediately”, along with over **90%** agents' utilization, is not uncommon) **?**

Service Engineering: A Subjective View

Goal (Subjective):

Develop scientifically-based design principles (**rules-of-thumb**) and tools (**software**) that support the balance of service **quality**, process **efficiency** and business **profitability**, from the (often conflicting) views of customers, servers and managers.

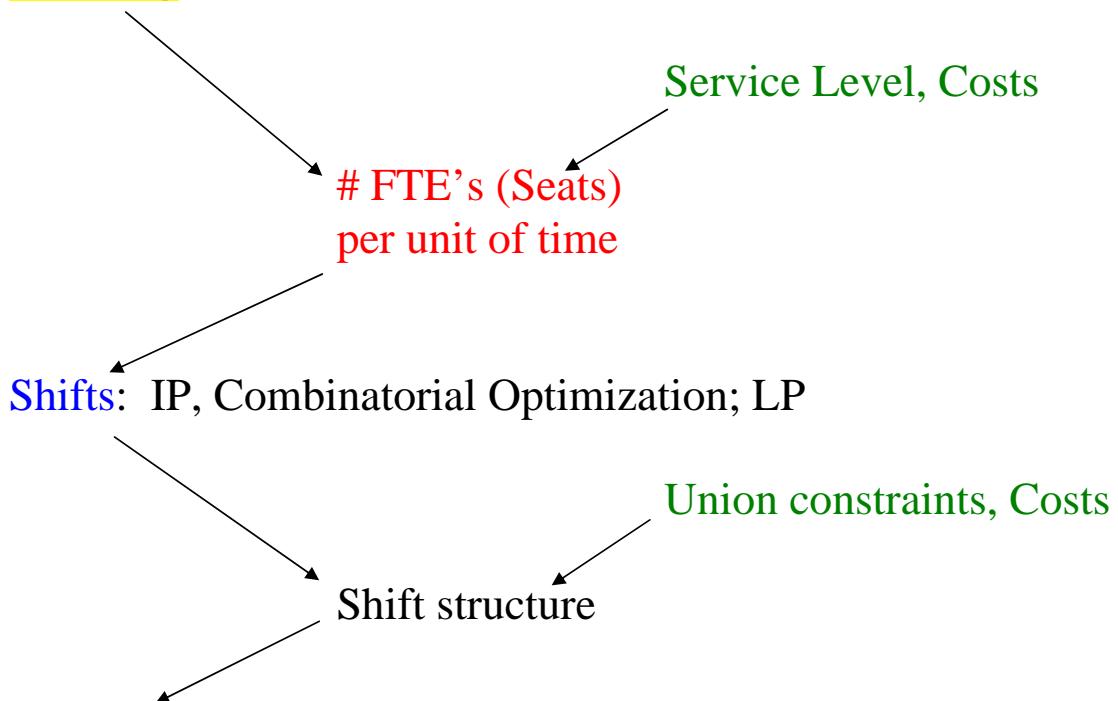
Contrast/Complement the traditional and prevalent

- Service Management (U.S. Business Schools)
- Industrial Engineering (European/Japanese Engineering Schools)

Examples:

- **Staffing** - How many agents required for balancing service-quality with operational efficiency (or, for maximizing profit).
- **Skills-Based Routing (SBR)** - Platinum and Gold and Silver customers, all seeking Information or Purchase or Technical Support, via Telephone or IVR or e.mail or Chat.
- Service Process **Design** + Staffing + SBR.

Recipe for Progress in Research, Teaching, Applications:


Simple Models at the Service of Complex Realities, with a pinch of a Multidisciplinary View (Operations, HRM, Marketing, MIS) = **Service Engineering**.

Workforce Management (WFM): Hierarchical Operational View

Forecasting Customers: Statistics, Time-Series
Agents : HRM (Hire, Train; Incentives, Careers)

Staffing: Queueing Theory

Rostering: Heuristics, AI (Complex)

Skills-based Routing: Stochastic Control

The Quality/Efficiency Tradeoff

- Quality and Efficiency are interwind (eg. Healthcare);
- **Personnel Costs:** 65-80% of expenditure (in call centers, and many other services);
- More than 90% of U.S. consumers form a company's image via their call center experience;

Objective: Having, **when** needed, the right **number** of appropriately **skilled** agents/nurses/.../**servers**.

This is a difficult problem, spanning:

Design, Planning, Forecasting, Staffing, Shifts, Rostering, Control.

In Lecture: Staffing (later also some Control).

In Recitation: Shifts (Forecasting).

In Homework: almost All.

Our “Solution” to the Staffing Problem

- “Simple Models at the Service of Complex Realities”: Erlang-B, Erlang-C, Erlang-A; then Predictable Variability; SBR; Closed- and Semi-Open Models;
- Many-Servers Approximations (Conceptual Solution): The ED, QD, QED Operational Regimes;
- Determining the Regimes: via Strategy or Operational Constraints;
- Determining Staffing-Levels: via Constraint-Satisfaction or Performance-Optimization;
- Rules-of-Thumb: The same for Constraint-Satisfaction and Performance-Optimization;
- Robustness (mostly) of the QED-Regime: The Square-Root Staffing Rule;

For example, consider the “Basic Service Station $M_t/G/n_t + G$ ”:

Operational Regimes: Rules-of-Thumb

Constraint	P{Ab}		E[W]		P{W > T}	
Offered Load	Tight 1-10%	Loose $\geq 10\%$	Tight $\leq 10\%E[\tau]$	Loose $\geq 10\%E[\tau]$	Tight $0 \leq T \leq 10\%E[\tau]$ $5\% \leq \alpha \leq 50\%$	Loose $T \geq 10\%E[\tau]$ $5\% \leq \alpha \leq 50\%$
Small (10's)	QED	QED	QED	QED	QED	QED
Moderate-to-Large (100's-1000's)	QED	ED, QED	QED	ED, QED if $\tau \stackrel{d}{=} \text{exp}$	QED	ED+QED

ED: $N \approx R - \gamma R$ $(0.1 \leq \gamma \leq 0.25)$.

QD: $N \approx R + \delta R$ $(0.1 \leq \delta \leq 0.25)$.

QED: $N \approx R + \beta \sqrt{R}$ $(-1 \leq \beta \leq 1)$.

ED+QED: $N \approx (1 - \gamma)R + \beta \sqrt{R}$ $(\gamma, \beta \text{ as above})$.

The Staffing Problem

Central in Services: Call Centers, Healthcare (Nurse, Doctors), ...

Here: **Determining Number of Servers (=FTE's):**

Load-Dependent, or (predictable variability) Time-Dependent.

Two Approaches:

1. **Constraint-Satisfaction:** Find the minimal number of agents n^* that satisfies pre-determined performance goal(s) / constraints.

A specific constraint-satisfaction problem can be solved via **4Call-Centers** (goal-seeking). But this solution lacks insight, eg. supporting **Rules of thumb**:

“How many servers needed if arrival rate doubles? services pooled?”

“How sensitive is performance to 25% (50%) error in parameter-estimates?”

2. **Performance-Optimization:** For example,

Cost-Minimization: Find n^* that minimizes

$$C_s \cdot n + (C_a \cdot P_n\{\text{Ab}\} + C_w \cdot E_n[W_q]) \cdot \lambda ,$$

where C_s , C_a and C_w are the **costs** of staffing, abandonment and waiting.

Similarly, which is becoming more and more prevalent,

Profit-Maximization: Find n^* that maximizes

$$r \cdot \lambda \cdot [1 - P_n\{\text{Ab}\}] - [C_s \cdot n + C_w \cdot E_n[W_q]) \cdot \lambda] ,$$

where r is the **revenue** from a service.

Operational Regimes: Rules-of-Thumb (The Basic Service Station $M_t/G/n_t + G$)

$R_t = E \int_{t-S}^t \lambda(u) du = E\lambda(t - S_e) \cdot ES = \text{Offered-Load}$ at time t , namely “minutes” of work (=service) within the system at time t . (Steady-State: $R = \lambda \times E[S]$ Erlangs, namely “minutes” of work that arrive per “minute”.)

- Efficiency-Driven (ED) Regime:

$$n_t \approx R_t - \gamma R_t, \quad 0 < \gamma < 1.$$

Under-staffing with respect to the offered-load.

- Quality-Driven (QD) Regime:

$$n_t \approx R_t + \delta R_t, \quad \delta > 0.$$

Over-staffing with respect to the offered-load.

- Quality- and Efficiency-Driven (QED) Regime:

$$n_t \approx R_t + \beta \sqrt{R_t}, \quad -\infty < \beta < \infty.$$

Rationalized staffing, or the **Square-Root** Rule:

- Often all that is needed.
- Introduced by **Erlang**, already in 1913!
- Characterized by **Halfin-Whitt**, only in 1981 (Erlang-C);
- Above version: Garnett, Zeltyn, Feldman (Technion theses).
- Leads to **Stable Performance!**

Operational Regimes: Rules-of-Thumb for Performance

If the **Offered-Load** R is not small (several 10's or more for QED, more than 100 for ED and QD), then a **relatively time-stable** performance can be expected as follows:

ED regime:

$$n \approx R_t - \gamma R_t, \quad 0.1 \leq \gamma \leq 0.25.$$

- Essentially **all** customers delayed prior to service;
- %Abandoned $\approx \gamma$ (10-25%);
- Average Wait \approx 30 seconds - 2 minutes.

QD regime:

$$n \approx R_t + \delta R_t, \quad 0.1 \leq \delta \leq 0.25.$$

Essentially **no** delays.

QED regime:

$$n \approx R_t + \beta \sqrt{R_t}, \quad -1 \leq \beta \leq 1.$$

- %Delayed **constant** over time, with values **25% - 75%**;
- %Abandoned is 1-5%;
- Average wait is one-order less than average service-time (eg. seconds vs. minutes).

Motivation: QED Erlang-A, or “The Right Answer for the Wrong Reason”

Recall: $R = \lambda/\mu$ is the **offered-load** (measured in Erlangs): “minutes” of work that arrive per “minute”.

“**Naive**” (Deterministic, Stochastic-ignorant) approach:
Staffing at the working-load level: $n = R$.

Erlang-C: tele-queue “explodes” ($n > R$ necessary for stability).

But customers do not “think” Erlang-C:
if waiting is excessive they simply **abandon**:

Erlang-A: $E[S]=3$ min, $E[\tau]=3$ min

λ/hr	n	Occupancy	$P\{W_q > 0\}$	$E[W_q]$	$P\{\text{Ab}\}$
20	1	63.2%	63.2%	1:06.2	36.8%
100	5	82.5%	56.0%	0:31.6	17.5%
500	25	92.0%	52.7%	0:14.3	8.0%
2,500	125	96.4%	51.2%	0:06.4	3.6%
9,000	450	98.1%	50.6%	0:03.4	1.9%
↓	↓	↓	↓	↓	↓
∞	∞	1 ?	50% ?	0 ?	0 ?

Motivation: QD Operation, or "What can be Achieved? At what Cost?"

U.S. Tele-Retail Company. ACD Report.

	Avg Ans	Speed W	Avg Aban	ACD Calls	Avg ACD	Avg ACW	Avg Aban	% ACD	% Ans	Avg Calls	Per Pos	% Serv	% Aux	% ACW	% ACD
	Time		Time	Time	Time	Time	Time	Time	Ans	Pos	Pos	Lev	Time	Time	Time
Totals	:00:02	:00:28		10456	:03:47	:00:25	46	53	98	70	149	8			
12:00 AM*	:00:00	:00:00		26	:04:31	:00:02	1	76	51	7	4	51	2	18	51
12:30 AM*	:00:03	:04:10		14	:07:27	:00:33	1	89	52	5	3	48	1	26	83
1:00 AM*	:00:00			9	:04:54	:11:29	0	91	90	1	7	90	0	28	65
5:30 AM*				0			0	0	0	0	0		33	0	0
6:00 AM*	:00:00			12	:03:21	:00:18	0	21	100	7	2	100	9	2	18
6:30 AM*	:00:00			27	:02:51	:00:20	0	32	100	14	2	100	5	3	29
7:00 AM*	:00:00			62	:03:34	:00:15	0	38	100	21	3	100	13	4	34
7:30 AM*	:00:00			93	:03:11	:00:34	0	36	100	30	3	100	7	4	32
8:00 AM*	:00:00			120	:03:37	:00:40	0	39	100	47	3	100	8	6	33
8:30 AM*	:00:00			193	:03:04	:00:14	0	44	100	61	3	100	10	7	37
9:00 AM*	:00:01			293	:03:25	:00:25	0	54	89	75	4	87	9	7	47
9:30 AM*	:00:02	:00:06		381	:03:45	:00:22	2	60	87	91	4	93	8	8	52
10:00 AM*	:00:02	:00:01		416	:03:49	:00:26	1	63	87	94	4	98	5	8	55
10:30 AM*	:00:00			349	:03:35	:00:33	0	52	99	95	4	98	6	8	44
11:00 AM*	:00:00			252	:03:50	:00:27	0	51	100	102	3	100	7	8	45
11:30 AM*	:00:00			348	:03:44	:00:18	0	49	100	97	4	100	8	6	45
12:00 PM*	:00:01			354	:03:59	:00:18	0	52	95	95	4	95	8	5	47
12:30 PM*	:00:00			396	:03:38	:00:21	0	52	99	97	3	99	9	8	46
1:00 PM*	:00:00			347	:03:53	:00:32	0	51	99	98	4	99	11	8	44
1:30 PM*	:00:00			368	:03:52	:00:14	0	56	99	98	4	99	11	7	60
2:00 PM*	:00:01			393	:03:55	:00:17	0	51	100	105	4	100	10	5	46
2:30 PM*	:00:00			403	:03:58	:00:13	0	54	100	112	4	100	10	4	50
3:00 PM*	:00:00	:00:04		410	:04:02	:00:16	1	57	98	110	4	98	8	5	51
3:30 PM*	:00:00			347	:03:59	:00:14	0	60	100	100	3	100	7	5	45
4:00 PM*	:00:00			382	:03:48	:01:37	0	64	100	98	4	100	6	7	47
4:30 PM*	:00:00			378	:03:41	:00:18	0	65	99	97	4	99	8	5	50
5:00 PM*	:00:00			411	:03:53	:00:19	0	53	100	109	4	100	8	5	48
5:30 PM*	:00:01			387	:03:58	:00:19	0	58	99	98	4	99	10	6	51
6:00 PM*	:00:01	:00:21		371	:03:28	:00:25	1	53	98	81	4	98	9	6	47
6:30 PM*	:00:00			260	:03:26	:00:13	0	41	100	90	3	100	8	4	37
7:00 PM*	:00:00			289	:03:24	:00:17	0	42	100	78	3	100	9	5	38

Motivation: QD Performance Analysis

Observed:

10:00-10:30 am, with 94 agents;
416 calls; 2 seconds ASA.

Service time: $E[S] = \text{ACD Time} + \text{ACW Time},$
 $= 3:49 + 0:26 = 4:15.$

Offered load: $R = \lambda \times E[S],$
 $= 416 \times (4:15 / 30 \text{ min}),$
 $= 1768 \text{ min} / 30 \text{ min} = 59 \text{ Erlangs}.$

Occupancy: $\rho = R/n,$
 $= 59/94 = 63\%.$

Compare with the column "% ACD Time" of the ACD report.

QD Rule of-Thumb: $n \approx R + \delta \cdot R, \delta > 0,$ where
 δ ~~is~~ Service Grade parameter (or Quality of Service (QOS)).

- In the **QD regime** abandonments are rare, in which case there is **hardly any distinction between Erlang-C and Erlang-A.** But this is definitely *not* the case in the QED- and ED regime, hence our subsequent discussions will be Erlang-specific.

Motivation: ED Erlang-C, or “One-to-One Staffing in City-Bank”

“First National City Bank Operating Group”

“By tradition, the method of meeting increased work load in banking is to increase staff. If an operation could be done at a rate of 80 transactions per day, and daily load increased by 80, then the manager in charge of that operation would hire another person; it was taken for granted...” (Harvard Case)

1:1 Staffing - Classical IE (Erlang-C)

8 transactions per hour \Rightarrow **E(S) = 7:30 minutes (=M)**

<u>λ/hr</u>	<u>N Agents</u>	<u>$\rho = OCC$</u>	<u>$L_q = Que$</u>	<u>$W_q = ASA$</u>
8	2	50%	0.3	2:30
16	3	67%	0.9	3:20
24	4	75%	1.5	3:49
32	5	80%	2.2	4:09

<u>λ/hr</u>	<u>N</u>	<u>$\rho = \text{OCC}$</u>	<u>$L_q = \text{Que}$</u>	<u>$W_q = \text{ASA}$</u>
72	10	90%	60	5:01
120	16	93.8%	11	5:29
400	51	98%	42	6:18
640	81	98.8%	70	6:32
1,280	161	99.4%	145	6:48
2,560	321	99.7%	299	7:00
3,600	451	99.8%	423	7:04
	\downarrow	\downarrow	\downarrow	\downarrow
	∞	∞	1	∞
				7:30 !

⇒ **Efficiency-Driven Operation (Heavy-Traffic)**

Intuition: at 100% utilization, N servers = 1 fast server

Indeed $\bar{W}_q \approx \bar{W}_q | W_q > 0 = \frac{1}{N} \cdot \frac{\rho_N}{1 - \rho_N} \cdot E(S) \rightarrow E(S) = 7:30 !$

since $\rho_N = \frac{\lambda_N \times E(S)}{N} = \frac{8(N-1) \times 7.5 / 60}{N} = \frac{N-1}{N} = 1 - \frac{1}{N}$

$$N(1 - \rho_N) = 1 \quad , \quad \rho_N \rightarrow 1 \text{ .}$$

Motivation: Operational Regimes

Health insurance company. ACD Report.

Time	Calls	Answered	Abandoned%	ASA	AHT	Occ%	# of agents
Total	20,577	19,860	3.5%	30	307	95.1%	
8:00	332	308	7.2%	27	302	87.1%	59.3
8:30	653	615	5.8%	58	293	96.1%	104.1
9:00	866	796	8.1%	63	308	97.1%	140.4
9:30	1,152	1,138	1.2%	28	303	90.8%	211.1
10:00	1,330	1,286	3.3%	22	307	98.4%	223.1
10:30	1,364	1,338	1.9%	33	296	99.0%	222.5
11:00	1,380	1,280	7.2%	34	306	98.2%	222.0
11:30	1,272	1,247	2.0%	44	298	94.6%	218.0
12:00	1,179	1,177	0.2%	1	306	91.6%	218.3
12:30	1,174	1,160	1.2%	10	302	95.5%	203.8
13:00	1,018	999	1.9%	9	314	95.4%	182.9
13:30	1,061	961	9.4%	67	306	100.0%	163.4
14:00	1,173	1,082	7.8%	78	313	99.5%	188.9
14:30	1,212	1,179	2.7%	23	304	96.6%	206.1
15:00	1,137	1,122	1.3%	15	320	96.9%	205.8
15:30	1,169	1,137	2.7%	17	311	97.1%	202.2
16:00	1,107	1,059	4.3%	46	315	99.2%	187.1
16:30	914	892	2.4%	22	307	95.2%	160.0
17:00	615	615	0.0%	2	328	83.0%	135.0
17:30	420	420	0.0%	0	328	73.8%	103.5
18:00	49	49	0.0%	14	180	84.2%	5.8

Quality-Driven (QD) Erlang-A

Time	Calls	Answered	Abandoned%	ASA	AHT	Occ%	# of agents
17:00	615	615	0.0%	2	328	83.0%	135.0

- Occupancy far below 100% (for a many-server system);
- Negligible $P\{Ab\}$;
- Very short ASA;
- $P\{W_q > 0\} \approx 0$.

Offered Load:

$$R = \frac{\lambda}{\mu} = \frac{615}{1,800} \times 328 = 112.07 \text{ Erlangs.}$$

Characterization:

$$n = R \cdot (1 + \delta), \quad \delta > 0.$$

QOS parameter:

$$\delta = \frac{n}{R} - 1 = \frac{135}{112.07} - 1 = 0.205.$$

Note: With offered-load R higher than 100 Erlangs, staffing of 20% over R ($\delta = 0.2$) already suffices for QD service.

Efficiency-Driven (ED) Erlang-A

Time	Calls	Answered	Abandoned%	ASA	AHT	Occ%	# of agents
13:30	1,061	961	9.4%	67	306	100.0%	163.4

- 100% occupancy;
- High $P\{Ab\}$;
- Considerable ASA;
- $P\{W_q > 0\} \approx 1$.

Offered Load:

$$R \triangleq \frac{\lambda}{\mu} = \frac{1,061}{1,800} \times 306 = 180.37 \text{ Erlangs. (Rates: per 30 min.)}$$

Characterization:

$$n = R \cdot (1 - \gamma), \quad \gamma > 0.$$

Service-Grade (or Quality-of-Service (QOS)) parameter:

$$\gamma = 1 - \frac{n}{R} = 1 - \frac{163.4}{180.37} = 0.094 \approx P\{Ab\}.$$

Proof via flow conservation (fluid-view):

$$\lambda \cdot (1 - P\{Ab\}) = n \cdot \mu, \quad \text{hence } P\{Ab\} = 1 - \frac{n}{R} = \gamma.$$

QED Erlang-A

Time	Calls	Answered	Abandoned%	ASA	AHT	Occ%	# of agents
14:30	1,212	1,179	2.7%	23	304	96.6%	206.1

- High occupancy, yet not 100%;
- Small $P\{Ab\}$ and ASA, yet not negligible;
- $P\{W_q > 0\} \approx \alpha$, $0 < \alpha < 1$.

Offered Load:

$$R = \frac{\lambda}{\mu} = \frac{1212}{1800} \times 304 = 204.69 \text{ Erlangs};$$

(very close to $n = 206.1$; recall stochastic-ignorant staffing).

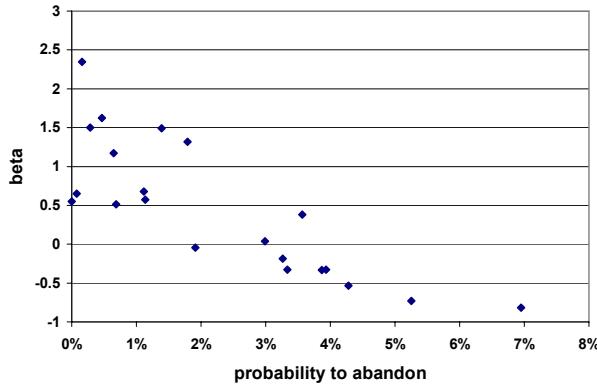
Characterization:

$$n = R + \beta\sqrt{R}, \quad -\infty < \beta < \infty.$$

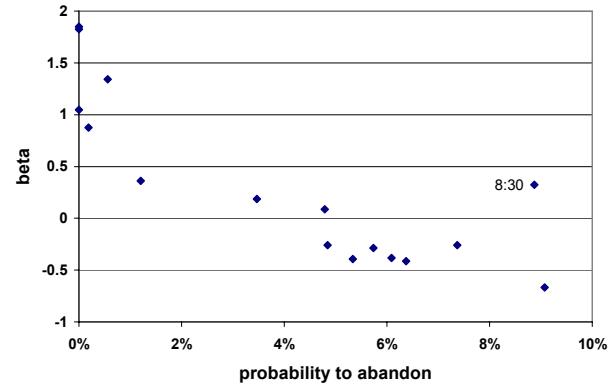
QOS parameter:

$$\beta = \frac{n - R}{\sqrt{R}} = \frac{206.1 - 204.69}{\sqrt{204.69}} = 0.10.$$

Square-Root Staffing Rule:

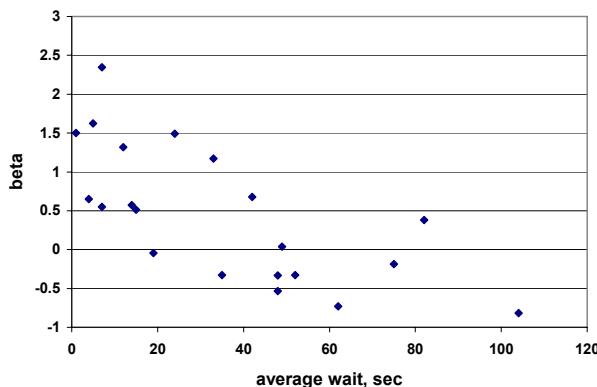

- Described by Erlang already in 1924 (used in 1913);
- Folklore till Halfin & Whitt, 1981 (Erlang-C);
- Above (Erlang-A) from Garnett's Technion M.Sc. thesis, 2001.

The QED Regime in Practice

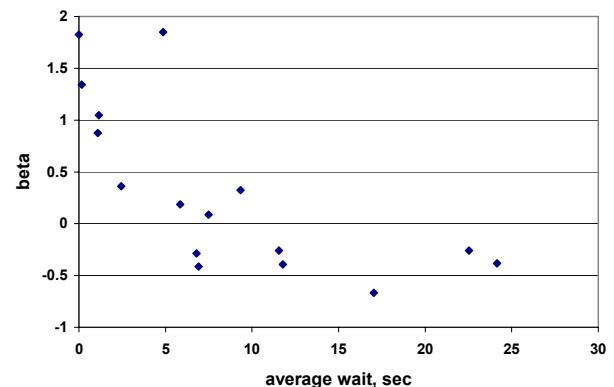

Two call centers: U.S. (Health-Insurance) and Italian (Tele-Banking). Calculate hourly $\beta = \frac{n-R}{\sqrt{R}}$, then compare against performance.

QOS β vs. Abandonment

U.S. data



Italian data



QOS β vs. Average Wait

U.S. data

Italian data

Yet to Come:

- Jagerman (Erlang-B) - 1970's;
- The Halfin-Whitt (Erlang-C) Theorem - 1981;
- Intuition via Excursions (Busy- and Idle-Periods);
- QD Erlang-C;
- Pooling Scenarios;
- Motivating Erlang-A via $M/M/\infty$;
- Garnett's Theorem (Erlang-A) - Technion M.Sc. 2001;
- Zeltyn's Theorem ($M/M/n + G$) - Technion Ph.D., 2005;
- Cost Minimization (Erlang-C, Erlang-A);
- Constraint Satisfaction (Erlang-A): the 80-20 rule;
- Feldman's Algorithm (Predictable Queues) - Technion M.Sc., 2006-7.
- Gurvich (V-Model; SBR) - Technion M.Sc., 2004;
Columbia Ph.D., 2007.