

**Data-Based  
Service Engineering (Science, Management)  
in Call Centers, Hospitals, ...**

Avishai Mandelbaum

Technion, Haifa, Israel

<http://ie.technion.ac.il/serveng>

16th IE&M Conference, Tel-Aviv, March 2010

# Research Partners

- ▶ **Students:**

**Aldor\*, Baron\*, Carmeli, Feldman, Garnett\*, Gurvich\*, Khudiakov\*, Maman\*, Marmor, Reich, Rosenshmidt\*, Shaikhet\*, Senderovic, Tseytlin\*, Yom-Tov, Zaied, Zeltyn\*, Zohar\*, Zviran, ...**

- ▶ **Empirical/Statistical Analysis:**

**Brown, Gans, Zhao; Shen; Ritov, Goldberg; Allon, Bassamboo, Gurvich; Armony, ...**

- ▶ **Theory:**

**Armony, Atar, Feigin, Gurvich, Jelenkovic, Kaspi, Massey, Momcilovic, Reiman, Shimkin, Stolyar, Wasserkrug, Whitt, Zeltyn, ...**

- ▶ **Industry:**

**IBM Research (OCR: Carmeli, Vortman, Wasserkrug, Zeltyn), Rambam Hospital, Hapoalim Bank, Mizrahi Bank, Pelephone Cellular, ...**

- ▶ **Technion SEE Center / Labaratory:**

**Feigin; Trofimov, Nadjharov, Gavako, Kutsyy; Liberman, Koren, Rom; Research Assistants, ...**

# The Technion SEE Center / Laboratory

## Data-Based Research & Teaching



## History, Resources (Downloadable)

- ▶ Math. + C.S. + Stat. + O.R. + Mgt.  $\Rightarrow$  **IE&M**
- ▶ “Service-Engineering” Course ( $\geq$  1995):  
<http://ie.technion.ac.il/serveng> - website  
[http://ie.technion.ac.il/serveng/References/teaching\\_paper.pdf](http://ie.technion.ac.il/serveng/References/teaching_paper.pdf)

## History, Resources (Downloadable)

- ▶ Math. + C.S. + Stat. + O.R. + Mgt.  $\Rightarrow$  **IE&M**
- ▶ **“Service-Engineering” Course** ( $\geq$  1995):  
<http://ie.technion.ac.il/serveng> - website  
[http://ie.technion.ac.il/serveng/References/teaching\\_paper.pdf](http://ie.technion.ac.il/serveng/References/teaching_paper.pdf)
- ▶ **SEELab** ( $\geq$  2007), following StatLab ( $\geq$  2000):  
Data, Reports, Tutorials.  
<http://ie.technion.ac.il/Labs/Serveng>
- ▶ **OCR** Project ( $\geq$  2008):  
IBM Research + Rambam Hospital + Technion IE&M  
[http://ie.technion.ac.il/Labs/Serveng/closed/OCR\\_Documents.php](http://ie.technion.ac.il/Labs/Serveng/closed/OCR_Documents.php)

## History, Resources (Downloadable)

- ▶ Math. + C.S. + Stat. + O.R. + Mgt. ⇒ **IE&M**
- ▶ **"Service-Engineering" Course** ( $\geq$  1995):  
<http://ie.technion.ac.il/serveng> - website  
[http://ie.technion.ac.il/serveng/References/teaching\\_paper.pdf](http://ie.technion.ac.il/serveng/References/teaching_paper.pdf)
- ▶ **SEELab** ( $\geq$  2007), following StatLab ( $\geq$  2000):  
Data, Reports, Tutorials.  
<http://ie.technion.ac.il/Labs/Serveng>
- ▶ **OCR** Project ( $\geq$  2008):  
IBM Research + Rambam Hospital + Technion IE&M  
[http://ie.technion.ac.il/Labs/Serveng/closed/OCR\\_Documents.php](http://ie.technion.ac.il/Labs/Serveng/closed/OCR_Documents.php)
- ▶ **Technion IE&M** = Outsourcing Knowledge (Research, Practice)  
e.g. Search Google Scholar for <**Call Centers**>:  
First 5 entries originated at the Technion.

## The Case for Service Science / Engineering

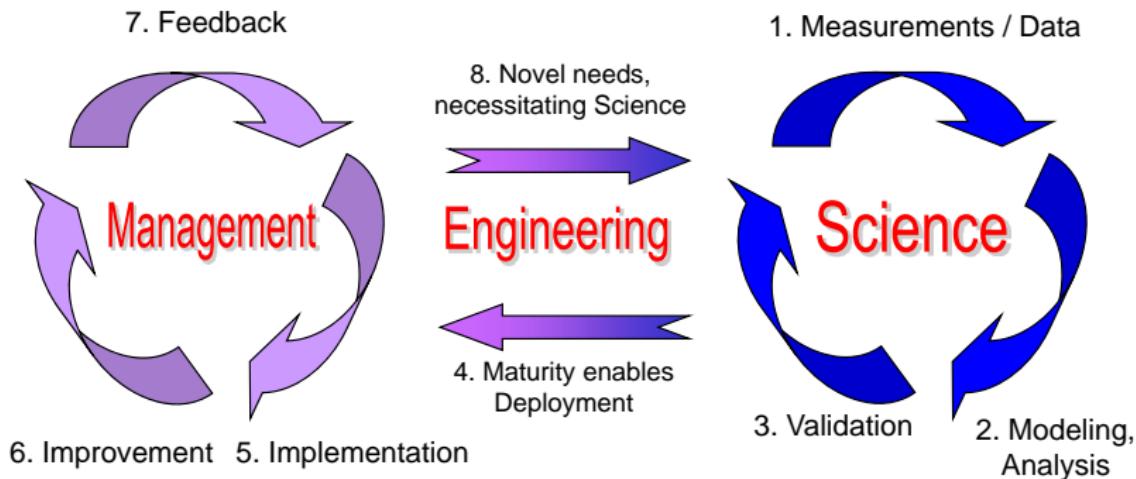
- ▶ **Service Science / Engineering** (vs. Management) are emerging **Academic Disciplines**. For example, universities (world-wide), IBM (SSME, a là Computer-Science), USA NSF (SEE), Germany IAO (ServEng), ...

# The Case for Service Science / Engineering

- ▶ **Service Science / Engineering** (vs. Management) are emerging **Academic Disciplines**. For example, universities (world-wide), IBM (SSME, a là Computer-Science), USA NSF (SEE), Germany IAO (ServEng), ...
- ▶ Simple models that explain fundamental phenomena, which are **common** across applications:
  - Call Centers
  - Hospitals
  - Justice
  - Transportation
  - ...

# The Case for Service Science / Engineering

- ▶ **Service Science / Engineering** (vs. Management) are emerging **Academic Disciplines**. For example, universities (world-wide), IBM (SSME, a là Computer-Science), USA NSF (SEE), Germany IAO (ServEng), ...
- ▶ **Simple** models that explain **fundamental phenomena**, which are **common** across applications:
  - Call Centers
  - Hospitals
  - Justice
  - Transportation
  - ...
- ▶ **What Can Be Done** vs. **How To** *(Pause for a Commercial)*


# Expanding the Scientific Paradigm

**Service Engineering** vs. **Industrial** Engineering  
**Human Complexity**

# Expanding the Scientific Paradigm

**Service Engineering** vs. **Industrial** Engineering

**Human Complexity** ⇒ **Scientific Paradigm** (Physics ... Economics) and beyond (with IBM Research):



## Started with Call Centers, Expanded to Hospitals

### Call Centers - U.S. (Israel) Stat.

- ▶ \$200 – \$300 billion annual expenditures (0.5)
- ▶ 100,000 – 200,000 call centers (500)
- ▶ "Window" into the company, for better or worse
- ▶ Over 3 million agents = **2% – 4% workforce** (11K)

## Started with Call Centers, Expanded to Hospitals

### Call Centers - U.S. (Israel) Stat.

- ▶ \$200 – \$300 billion annual expenditures (0.5)
- ▶ 100,000 – 200,000 call centers (500)
- ▶ "Window" into the company, for better or worse
- ▶ Over 3 million agents = **2% – 4% workforce** (11K)

### Healthcare - similar and unique challenges:

- ▶ Cost-figures far more staggering
- ▶ Risks much higher
- ▶ ED (initial focus) = hospital-window
- ▶ Over 3 million nurses

# Call-Center Environment: Service Network



## Call-Centers: “Sweat-Shops of the 21st Century”



# ER / ED Environment: Service Network

Acute (Internal, Trauma)

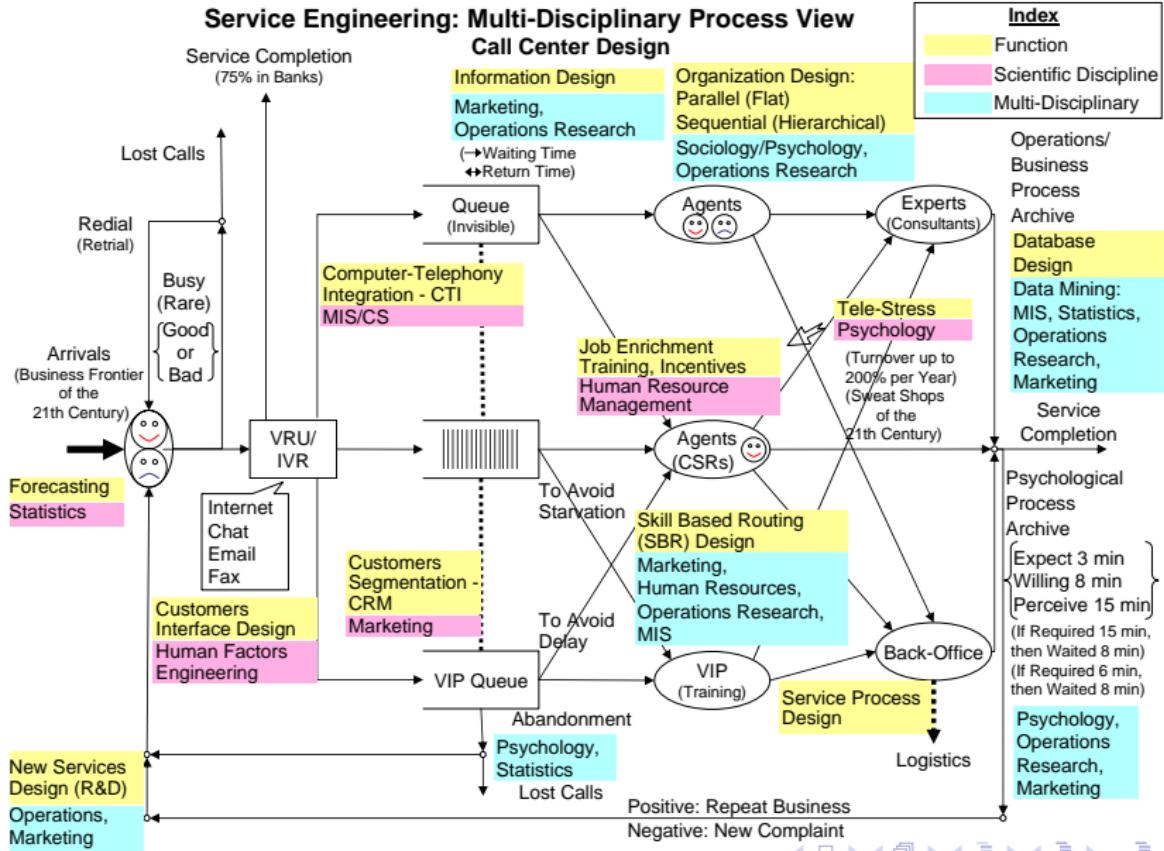


Walking



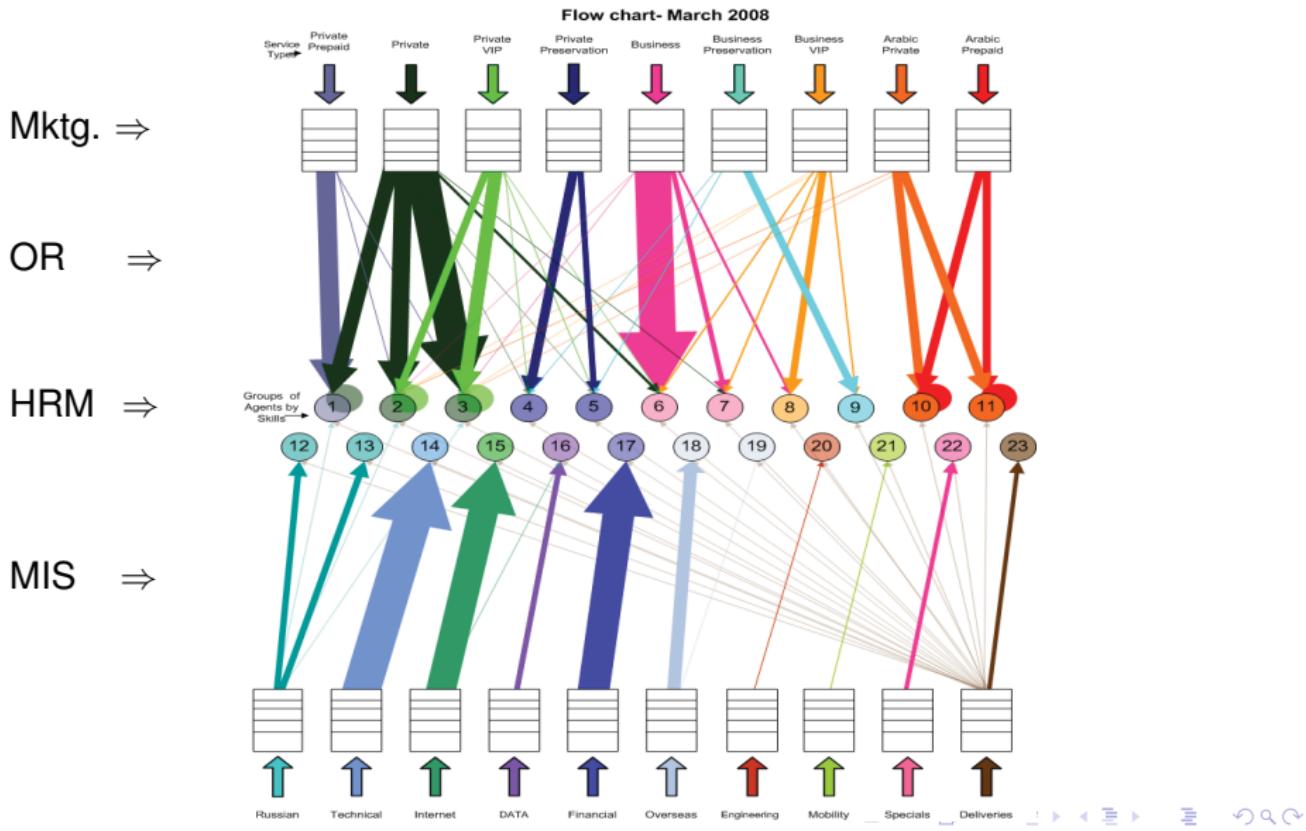
Multi-Trauma



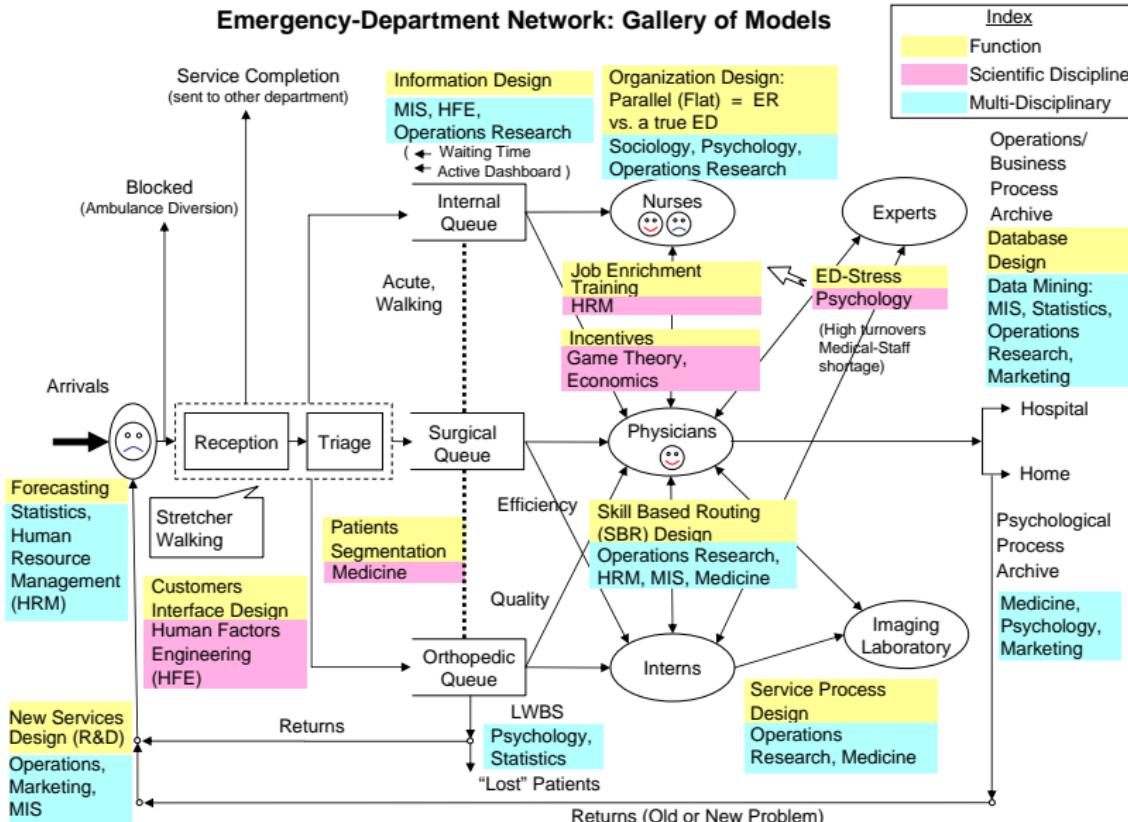

# ED-Environment in Israel



# ED-Queue in a “Good” Beijing Hospital



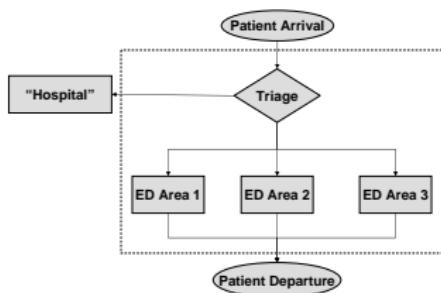

# Call-Center: Multi-Disciplinary ServEng View



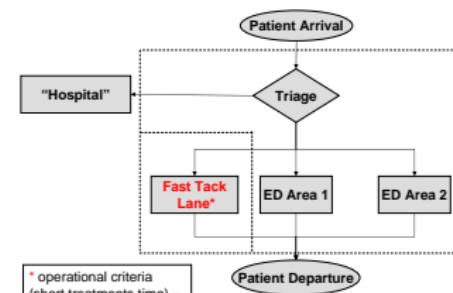

# Skills-Based Routing in Call Centers

## EDA and OR, with I. Gurvich and P. Lieberman

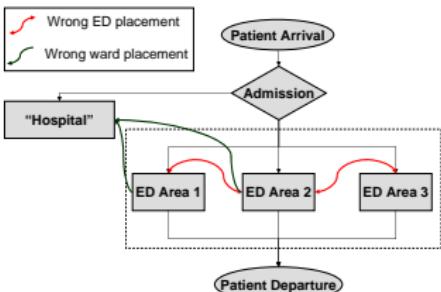



# Emergency-Dept.: Multi-Disciplinary ServEng View

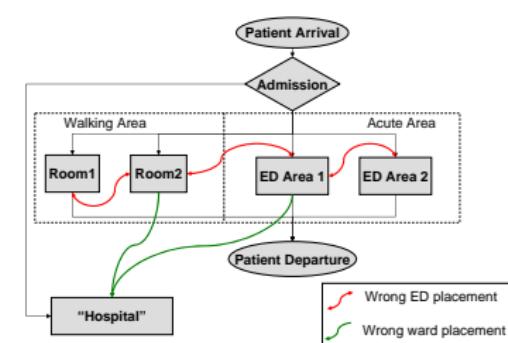



## ED Design, with B. Golany and Y. Marmor (PhD)

### Routing: Triage (Clinical), Fast-Track (Operational), ... (via DEA)


e.g. Fast Track most suitable when elderly dominate




(a) Triage Model



(b) Fast-Track Model



(c) Illness-based Model



(d) Walking-Acute Model

## ED-to-IW Routing: A Hospital Bottleneck

Israeli Large Hospital (1/5/06 to 30/10/08, excluding 1-3/07)

|                           | Ward A | Ward B | Ward C | Ward D |
|---------------------------|--------|--------|--------|--------|
| ALOS (days)               | 6.37   | 4.47   | 5.36   | 5.56   |
| Avg Occupancy Rate        | 97%    | 95%    | 86%    | 92%    |
| Avg # Patients per Month  | 206    | 187    | 210    | 210    |
| Standard bed capacity     | 45     | 30     | 44     | 42     |
| Avg # Patients /Bed/Month | 4.57   | 6.25   | 4.77   | 4.77   |
| Returns (within 3 months) | 15.4%  | 15.6%  | 16.2%  | 14.8%  |

## ED-to-IW Routing: A Hospital Bottleneck

Israeli Large Hospital (1/5/06 to 30/10/08, excluding 1-3/07)

|                           | Ward A | Ward B | Ward C | Ward D |
|---------------------------|--------|--------|--------|--------|
| ALOS (days)               | 6.37   | 4.47   | 5.36   | 5.56   |
| Avg Occupancy Rate        | 97%    | 95%    | 86%    | 92%    |
| Avg # Patients per Month  | 206    | 187    | 210    | 210    |
| Standard bed capacity     | 45     | 30     | 44     | 42     |
| Avg # Patients /Bed/Month | 4.57   | 6.25   | 4.77   | 4.77   |
| Returns (within 3 months) | 15.4%  | 15.6%  | 16.2%  | 14.8%  |

- ▶ The “fastest” + smallest **Ward B** subject to highest **workload** = **bed-occupancy, bed-turnover (flux)**: **unfair !**
- ▶ Calls for ED-to-IW routing, which is both **efficient and fair** (w/ **Tseytlin** (M.Sc.), Tseytlin & **Momcilovic**, Tseytlin & **Zviran**): **Markov exact, QED approx. (natural), partial information.**

## On “Fairness” in Hospitals (“Justice-Table”)

- ▶ **Patients Fairness** (prevalent): Least delays, hence higher priority to “faster” wards.
- ▶ **Personnel Fairness**: Nurses (doctors) share equal **Workload**.

## On “Fairness” in Hospitals (“Justice-Table”)

- ▶ **Patients Fairness** (prevalent): Least delays, hence higher priority to “faster” wards.
- ▶ **Personnel Fairness**: Nurses (doctors) share equal **Workload**.
- ▶ **Bed-Occupancy = Bed-Turnover  $\times$  ALOS**,  
by **Little’s Law**.

## Fair & Efficient ED-to-IW Routing

- ▶ **Tunable Routing**, customized to preferences, with **Y. Tseytlin** and **P. Momcilovic**:

Route to ward with **highest (weighted) idleness-ratio**, i.e.  
$$\# \text{ idle beds in ward} / \# \text{ idle-beds in total.}$$

## Fair & Efficient ED-to-IW Routing

- ▶ **Tunable Routing**, customized to preferences, with **Y. Tseytlin** and **P. Momcilovic**:

Route to ward with **highest (weighted) idleness-ratio**, i.e.  
$$\# \text{ idle beds in ward} / \# \text{ idle-beds in total.}$$

- ▶ For example, can be tuned so that faster wards have lower occupancy (**nurses happy**) and higher turnover (**management happy**).

## Fair & Efficient ED-to-IW Routing

- ▶ **Tunable Routing**, customized to preferences, with **Y. Tseytlin** and **P. Momcilovic**:

Route to ward with **highest (weighted) idleness-ratio**, i.e.  
$$\# \text{ idle beds in ward} / \# \text{ idle-beds in total.}$$

- ▶ For example, can be tuned so that faster wards have lower occupancy (**nurses happy**) and higher turnover (**management happy**).
- ▶ Last, but not least - Workload is both **Operational + Cognitive**: 5 minutes taking temperature vs. 5 minutes saving life.  
e.g. Two Maternity Wards perceive unfairness, hence psychological:
  - ▶ Ward 1: complications **before** birth
  - ▶ Ward 2: complications **after** birth
  - ▶ **Fair routing** of **normal** births? (Just starting, with **A. Rafaeli**)

## Prerequisite I: Data

**Averages Prevalent** (and could be useful / interesting).

But I need data at the level of the **Individual Transaction**:

For each service transaction (during a phone-service in a call center, or a patient's visit in a hospital, or browsing in a website, or . . .), its **operational history** = time-stamps of events .

## Prerequisite I: Data

**Averages Prevalent** (and could be useful / interesting).

But I need data at the level of the **Individual Transaction**:

For each service transaction (during a phone-service in a call center, or a patient's visit in a hospital, or browsing in a website, or . . .), its **operational history** = time-stamps of events .

Sources: “**Service-floor**” (vs. Industry-level, Surveys, . . .)

- ▶ **Administrative** (Court, via “paper analysis”)
- ▶ **Face-to-Face** (Bank, via bar-code readers)
- ▶ **Telephone** (Call Centers, via ACD / CTI, IVR/VRU)
- ▶ **Hospitals** (Emergency Departments, . . .)

## Prerequisite I: Data

**Averages Prevalent** (and could be useful / interesting).

But I need data at the level of the **Individual Transaction**:

For each service transaction (during a phone-service in a call center, or a patient's visit in a hospital, or browsing in a website, or . . .), its

**operational history** = time-stamps of events .

Sources: “**Service-floor**” (vs. Industry-level, Surveys, . . .)

- ▶ **Administrative** (Court, via “paper analysis”)
- ▶ **Face-to-Face** (Bank, via bar-code readers)
- ▶ **Telephone** (Call Centers, via ACD / CTI, IVR/VRU)
- ▶ **Hospitals** (Emergency Departments, . . .)
- ▶ Expanding:
  - ▶ Hospitals, via **RFID**, with **B. Carmeli, S. Israelit, Y. Marmor**
  - ▶ Operational + Financial + Contents (Marketing, Clinical)
  - ▶ Internet, chat (multi-media)

## Prerequisite II: Models (The Fluid View)

“Laws of Large Numbers” capture **Predictable** Variability (Averages)

## Prerequisite II: Models (The Fluid View)

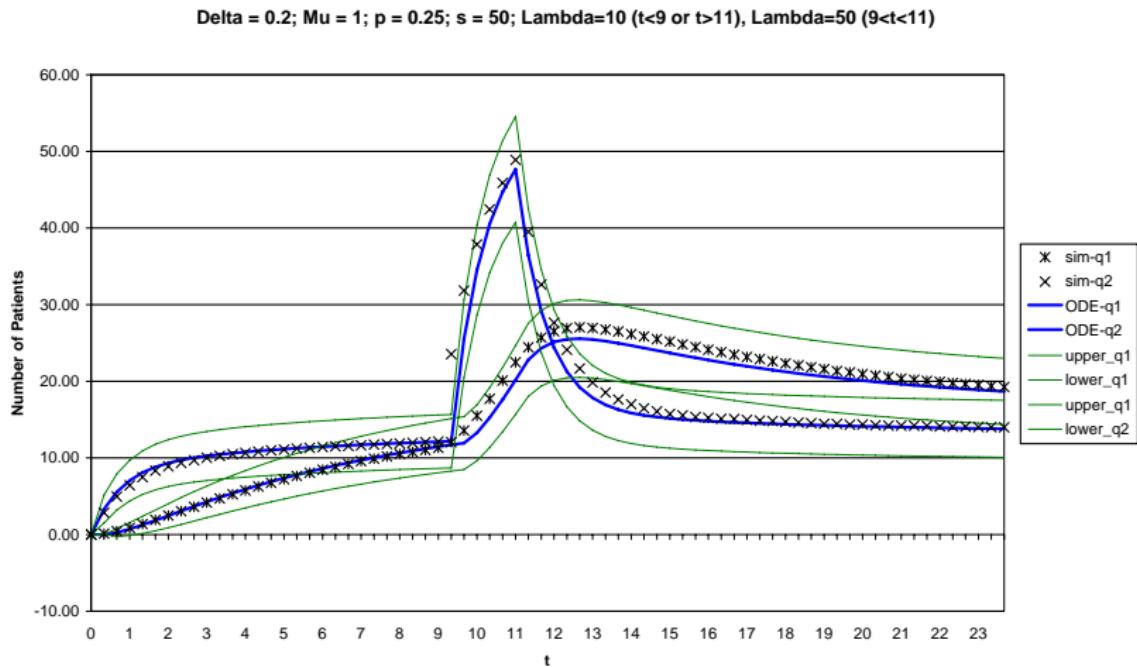
“Laws of Large Numbers” capture **Predictable** Variability (Averages)

## Flow Design and Control: Transportation (Fluid) Network



# The Fluid View: Labor-day Queueing at Niagara Falls

Stochastic Individualism Averaged out by the LLNs (Scale)




# Fluid Models: Preparing for Mass-Casualty Events

# Fluid Models: Preparing for Mass-Casualty Events

e.g. Erlang-R = ReEnter Patients, with G. Yom-Tov (PhD).

5-fold Rise in Inflow-Rate, between 9am -11am:



## Prerequisite II: Models (Stochastic)

Traditional Queueing Theory predicts that **Service-Quality** and **Servers' Efficiency must** be traded off against each other.

e.g. **Single-server** queue (M/M/1) in **Heavy-Traffic**:  
**91%** server's utilization goes with

$$\text{Congestion Index} = \frac{E[\text{Wait}]}{E[\text{Service}]} = 10,$$

and only **9%** of the customers are served immediately upon arrival.

## Prerequisite II: Models (Stochastic)

Traditional Queueing Theory predicts that **Service-Quality** and **Servers' Efficiency must** be traded off against each other.

e.g. **Single-server** queue (M/M/1) in **Heavy-Traffic**:  
**91%** server's utilization goes with

$$\text{Congestion Index} = \frac{E[\text{Wait}]}{E[\text{Service}]} = 10,$$

and only **9%** of the customers are served immediately upon arrival.

**Yet**, heavily-loaded queueing systems with **Congestion Index = 0.1** (Waiting one order of magnitude less than Service) are prevalent:

- ▶ **Call Centers**: Wait **“seconds”** for **minutes** service;
- ▶ **Transportation**: Search **“minutes”** for **hours** parking;
- ▶ **Hospitals**: Wait **“hours”** in ED for **days** hospitalization in IW's;

## Prerequisite II: Models (Stochastic)

Traditional Queueing Theory predicts that **Service-Quality** and **Servers' Efficiency must** be traded off against each other.

e.g. **Single-server** queue (M/M/1) in **Heavy-Traffic**:  
**91%** server's utilization goes with

$$\text{Congestion Index} = \frac{E[\text{Wait}]}{E[\text{Service}]} = 10,$$

and only **9%** of the customers are served immediately upon arrival.

**Yet**, heavily-loaded queueing systems with **Congestion Index = 0.1** (Waiting one order of magnitude less than Service) are prevalent:

- ▶ **Call Centers**: Wait **“seconds”** for **minutes** service;
- ▶ **Transportation**: Search **“minutes”** for **hours** parking;
- ▶ **Hospitals**: Wait **“hours”** in ED for **days** hospitalization in IW's;

and, moreover, a significant fraction are not delayed in queue. (For example, in well-run call-centers, **50%** served “immediately”, along with over **90%** agents' utilization, is not uncommon) **?** **QED**

## Operational Regimes: Conceptual Framework

**$R$ : Offered Load** not too small.

def.  $R = \text{Arrival-rate} \times \text{Average-Service-Time}$

e.g.  $R = 25 \text{ calls/min.} \times 4 \text{ min./call} = 100$

**$N$  = #Agents ?**

## Operational Regimes: Conceptual Framework

**$R$ : Offered Load** not too small.

def.  $R = \text{Arrival-rate} \times \text{Average-Service-Time}$

e.g.  $R = 25 \text{ calls/min.} \times 4 \text{ min./call} = 100$

**$N$  = #Agents ?**

**QD Regime:**  $N \approx R + \delta R$  ,  $0.1 < \delta < 0.25$  (e.g.  $N = 115$ )

- ▶ Essentially **no** delays

## Operational Regimes: Conceptual Framework

**$R$ : Offered Load** not too small.

def.  $R = \text{Arrival-rate} \times \text{Average-Service-Time}$

e.g.  $R = 25 \text{ calls/min.} \times 4 \text{ min./call} = 100$

**$N$  = #Agents ?**

**QD Regime:**  $N \approx R + \delta R$  ,  $0.1 < \delta < 0.25$  (e.g.  $N = 115$ )

- ▶ Essentially **no** delays

**ED Regime:**  $N \approx R - \gamma R$  ,  $0.1 < \gamma < 0.25$  (e.g.  $N = 90$ )

- ▶ **Garnett, M. & Reiman 2003**
- ▶ Essentially **all** customers are delayed
- ▶ Wait same order as service-time;  $\gamma\%$  Abandon (10-25%).

## Operational Regimes: Conceptual Framework

**$R$ : Offered Load** not too small.

def.  $R = \text{Arrival-rate} \times \text{Average-Service-Time}$

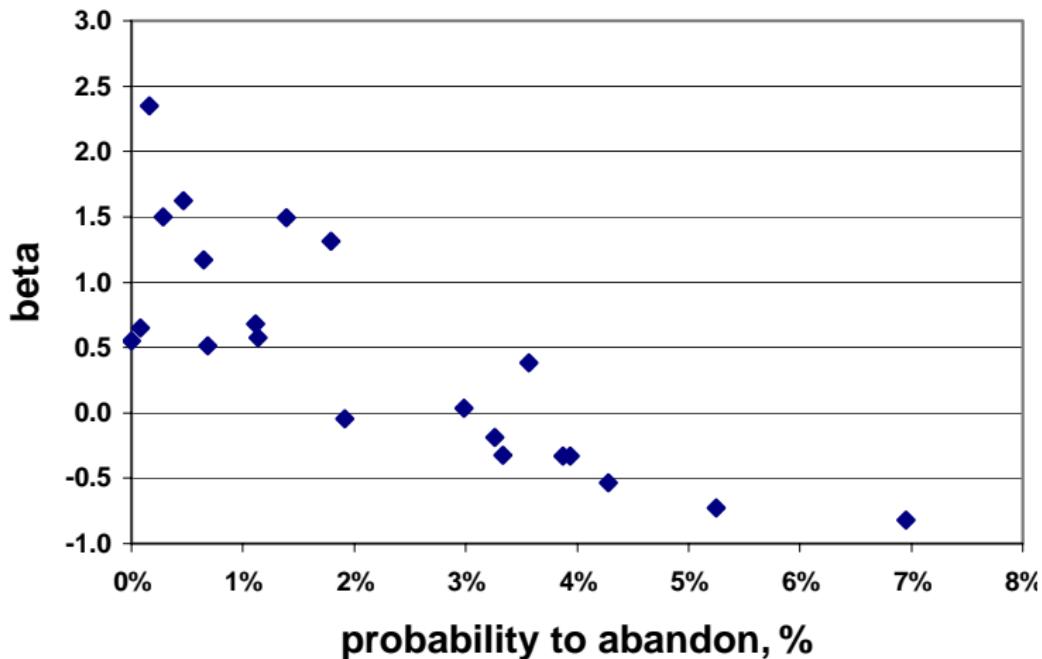
e.g.  $R = 25 \text{ calls/min.} \times 4 \text{ min./call} = 100$

**$N$  = #Agents ?**

**QD Regime:**  $N \approx R + \delta R$  ,  $0.1 < \delta < 0.25$  (e.g.  $N = 115$ )

- ▶ Essentially **no** delays

**ED Regime:**  $N \approx R - \gamma R$  ,  $0.1 < \gamma < 0.25$  (e.g.  $N = 90$ )


- ▶ **Garnett, M. & Reiman 2003**
- ▶ Essentially **all** customers are delayed
- ▶ Wait same order as service-time;  $\gamma\%$  Abandon (10-25%).

**QED Regime:**  $N \approx R + \beta \sqrt{R}$  ,  $-1 < \beta < +1$  (e.g.  $N = 100$ )

- ▶ Erlang 1913/24, Halfin & Whitt 1981, Garnett et. al.
- ▶ %Delayed between 25% and 75%
- ▶ Wait one-order below service-time (sec vs. min); 1-5% Abandon

## QED: Practical Support

QOS parameter  $\beta = (N - R) / \sqrt{R}$  vs. %Abandonment



## Operational Regimes: Rules-of-Thumb, with S. Zeltyn

| Constraint                          | P{Ab}          |                      | E[W]                        |                                                 | P{W > T}                                                            |                                                              |
|-------------------------------------|----------------|----------------------|-----------------------------|-------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------|
| Offered Load                        | Tight<br>1-10% | Loose<br>$\geq 10\%$ | Tight<br>$\leq 10\%E[\tau]$ | Loose<br>$\geq 10\%E[\tau]$                     | Tight<br>$0 \leq T \leq 10\%E[\tau]$<br>$5\% \leq \alpha \leq 50\%$ | Loose<br>$T \geq 10\%E[\tau]$<br>$5\% \leq \alpha \leq 50\%$ |
| Small (10's)                        | QED            | QED                  | QED                         | QED                                             | QED                                                                 | QED                                                          |
| Moderate-to-Large<br>(100's-1000's) | QED            | ED,<br>QED           | QED                         | ED,<br>QED if $\tau \stackrel{d}{=} \text{exp}$ | QED                                                                 | ED+QED                                                       |

## Operational Regimes: Rules-of-Thumb, with S. Zeltyn

| Constraint                          | P{Ab}          |                      | E[W]                        |                                                 | P{W > T}                                                            |                                                              |
|-------------------------------------|----------------|----------------------|-----------------------------|-------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------|
| Offered Load                        | Tight<br>1-10% | Loose<br>$\geq 10\%$ | Tight<br>$\leq 10\%E[\tau]$ | Loose<br>$\geq 10\%E[\tau]$                     | Tight<br>$0 \leq T \leq 10\%E[\tau]$<br>$5\% \leq \alpha \leq 50\%$ | Loose<br>$T \geq 10\%E[\tau]$<br>$5\% \leq \alpha \leq 50\%$ |
| Small (10's)                        | QED            | QED                  | QED                         | QED                                             | QED                                                                 | QED                                                          |
| Moderate-to-Large<br>(100's-1000's) | QED            | ED,<br>QED           | QED                         | ED,<br>QED if $\tau \stackrel{d}{=} \text{exp}$ | QED                                                                 | ED+QED                                                       |

**ED:**  $\mathbf{N} \approx \mathbf{R} - \gamma \mathbf{R}$   $(0.1 \leq \gamma \leq 0.25)$ .

**QD:**  $\mathbf{N} \approx \mathbf{R} + \delta \mathbf{R}$   $(0.1 \leq \delta \leq 0.25)$ .

**QED:**  $\mathbf{N} \approx \mathbf{R} + \beta \sqrt{\mathbf{R}}$   $(-1 \leq \beta \leq 1)$ .

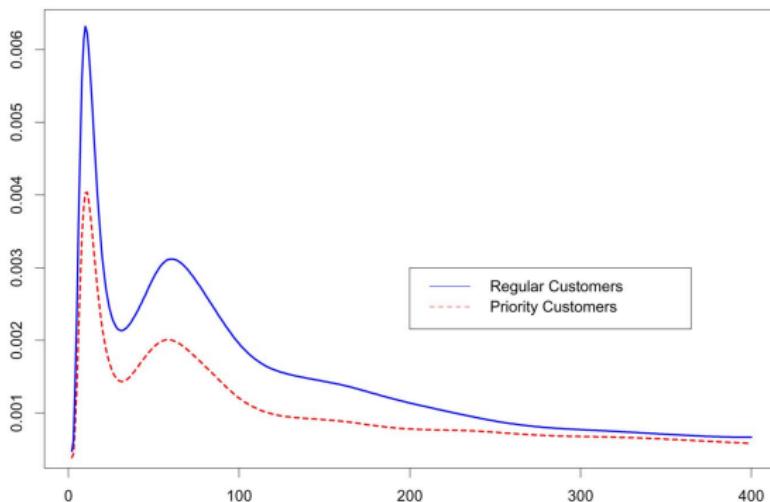
**ED+QED:**  $\mathbf{N} \approx (1 - \gamma) \mathbf{R} + \beta \sqrt{\mathbf{R}}$   $(\gamma, \beta \text{ as above})$ .

## Operational Regimes: Rules-of-Thumb, with S. Zeltyn

| Constraint                          | P{Ab}          |                      | E[W]                        |                                                 | P{W > T}                                                            |                                                              |
|-------------------------------------|----------------|----------------------|-----------------------------|-------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------|
| Offered Load                        | Tight<br>1-10% | Loose<br>$\geq 10\%$ | Tight<br>$\leq 10\%E[\tau]$ | Loose<br>$\geq 10\%E[\tau]$                     | Tight<br>$0 \leq T \leq 10\%E[\tau]$<br>$5\% \leq \alpha \leq 50\%$ | Loose<br>$T \geq 10\%E[\tau]$<br>$5\% \leq \alpha \leq 50\%$ |
| Small (10's)                        | QED            | QED                  | QED                         | QED                                             | QED                                                                 | QED                                                          |
| Moderate-to-Large<br>(100's-1000's) | QED            | ED,<br>QED           | QED                         | ED,<br>QED if $\tau \stackrel{d}{=} \text{exp}$ | QED                                                                 | ED+QED                                                       |

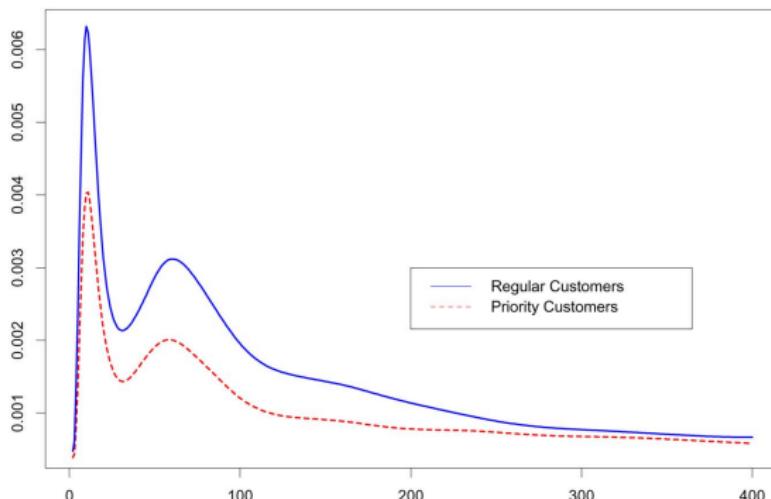
**ED:**  $\mathbf{N} \approx \mathbf{R} - \gamma \mathbf{R}$   $(0.1 \leq \gamma \leq 0.25)$ .

**QD:**  $\mathbf{N} \approx \mathbf{R} + \delta \mathbf{R}$   $(0.1 \leq \delta \leq 0.25)$ .


**QED:**  $\mathbf{N} \approx \mathbf{R} + \beta \sqrt{\mathbf{R}}$   $(-1 \leq \beta \leq 1)$ .

**ED+QED:**  $\mathbf{N} \approx (1 - \gamma) \mathbf{R} + \beta \sqrt{\mathbf{R}}$   $(\gamma, \beta \text{ as above})$ .

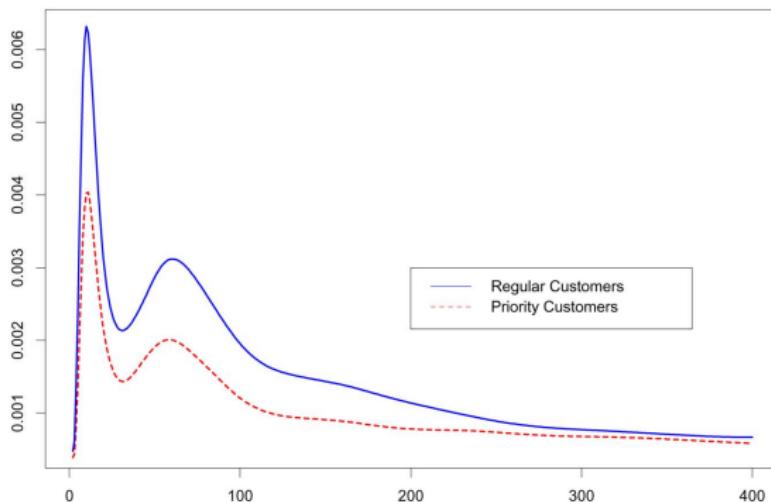
**WFM:** How to determine specific staffing level  $\mathbf{N}$  ? e.g.  $\beta$ .


## (Im)Patience while Waiting (Palm 1943-53)

Irritation  $\propto$  Hazard Rate of (Im)Patience Distribution  
Regular over VIP Customers – Israeli Bank



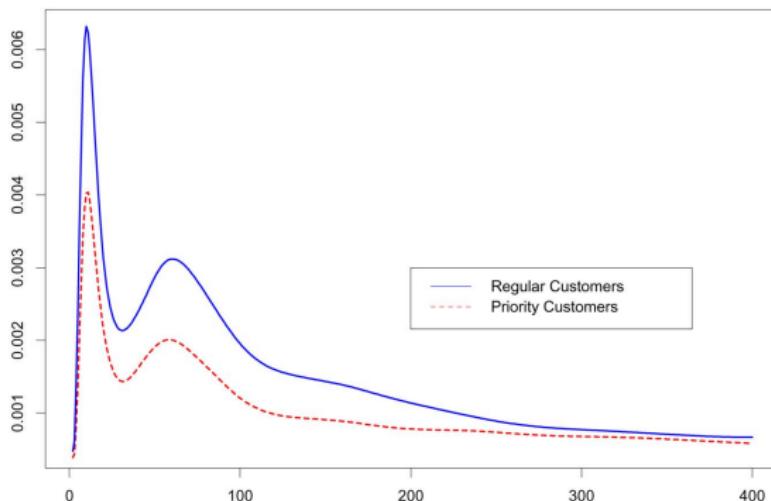
## (Im)Patience while Waiting (Palm 1943-53)


Irritation  $\propto$  Hazard Rate of (Im)Patience Distribution  
Regular over VIP Customers – Israeli Bank



- ▶ Call-by-Call Data (SEELab) required (& **Un-Censoring**)

## (Im)Patience while Waiting (Palm 1943-53)

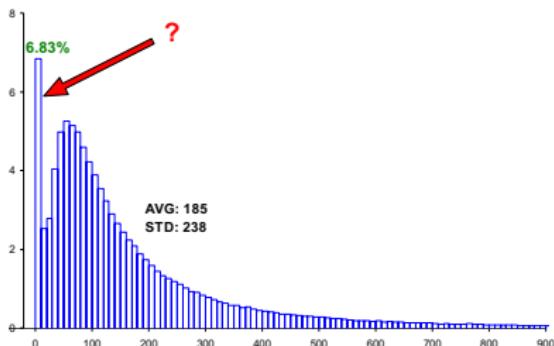

Irritation  $\propto$  Hazard Rate of (Im)Patience Distribution  
Regular over VIP Customers – Israeli Bank



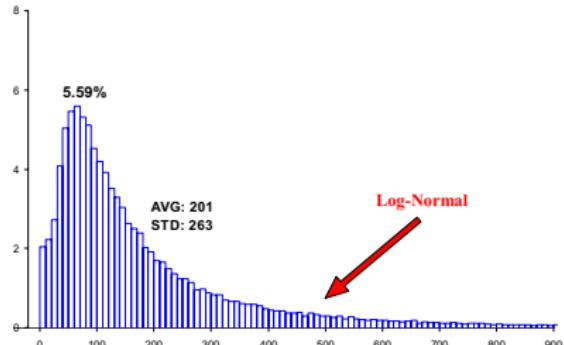
- ▶ Call-by-Call Data (SEELab) required (& **Un-Censoring**)
- ▶ **Peaks** of abandonment at times of **Announcements**

## (Im)Patience while Waiting (Palm 1943-53)

Irritation  $\propto$  Hazard Rate of (Im)Patience Distribution  
Regular over VIP Customers – Israeli Bank




- ▶ Call-by-Call Data (SEELab) required (& **Un-Censoring**)
- ▶ **Peaks** of abandonment at times of **Announcements**
- ▶ VIP are **more patient** (Needy)

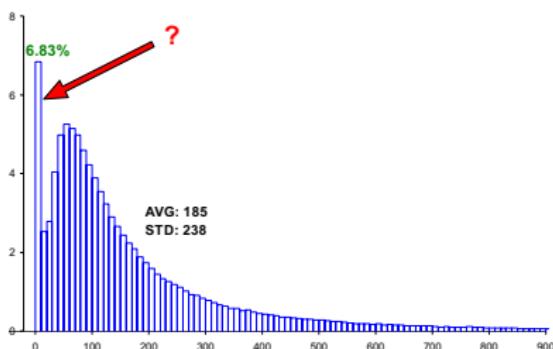

# Beyond Averages: The Human Factor

## Histogram of Service-Time in a (Small Israeli) Bank

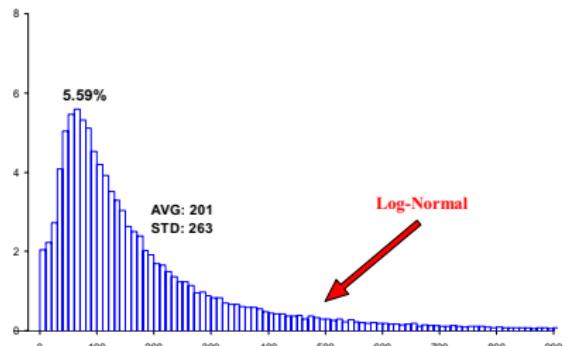
January-October



November-December




- ▶ 6.8% Short-Services:

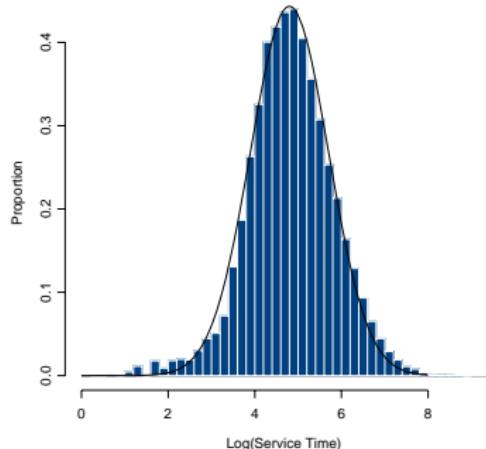

# Beyond Averages: The Human Factor

## Histogram of Service-Time in a (Small Israeli) Bank

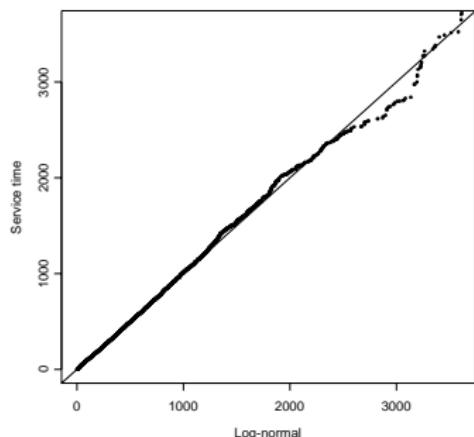
January-October



November-December




- ▶ **6.8% Short-Services:** Agents' "Abandon" (improve bonus, rest), lead by **incentives**
- ▶ **Distributions** must be measured (in seconds)
- ▶ **LogNormal** service times common in call centers

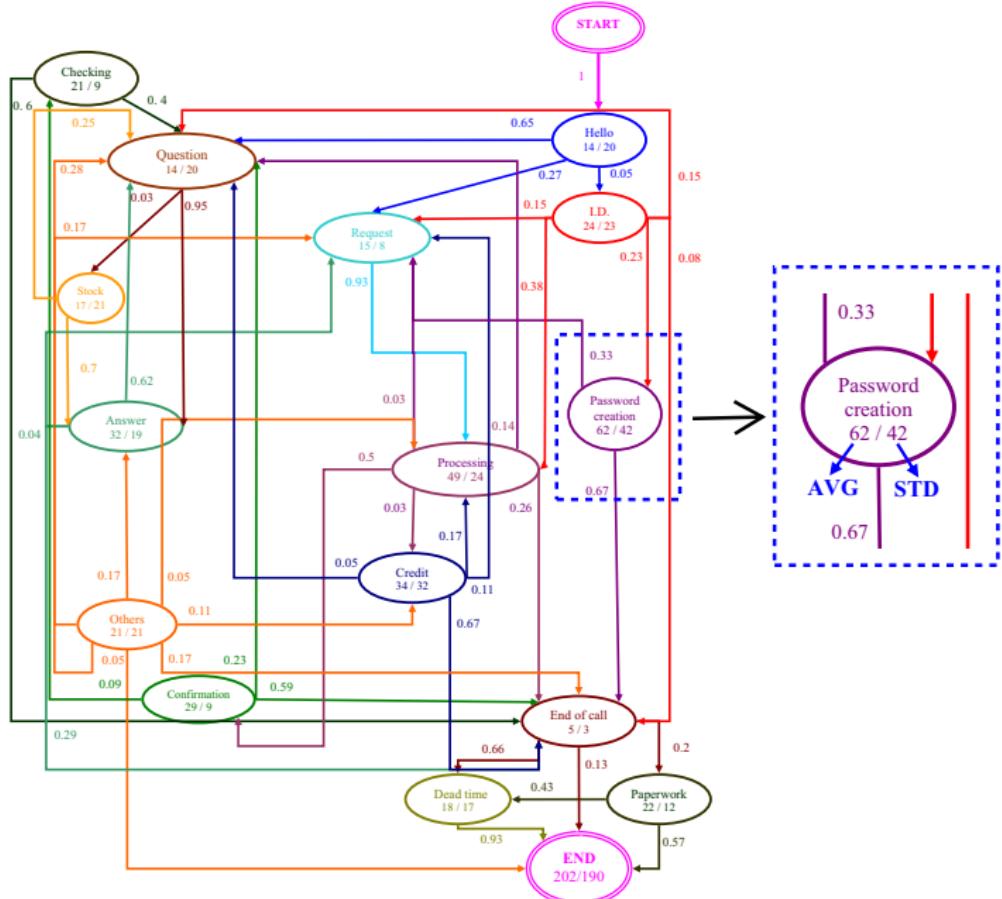

# Validating LogNormality of Service-Times

Israeli Call Center, Nov-Dec, 1999

Log(Service Times)



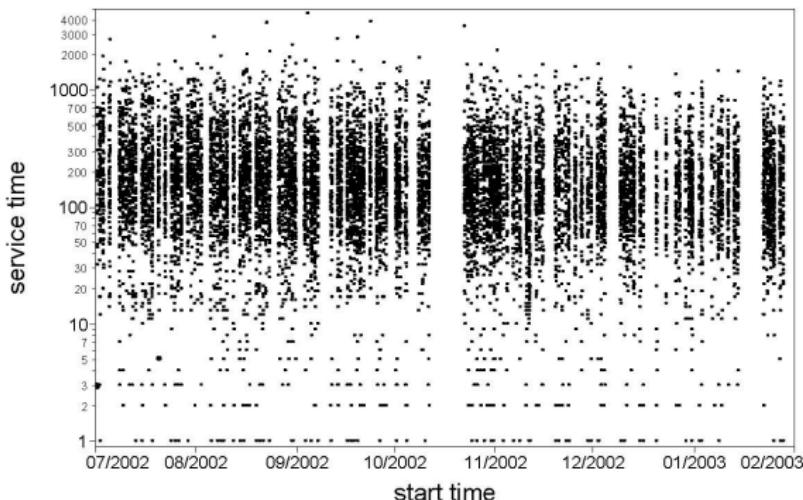
LogNormal QQPlot



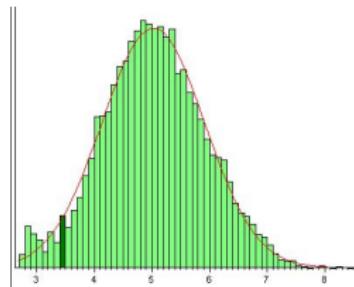

- ▶ **Practically Important:** (mean, std)(log) capture Service-Times
- ▶ **Theoretically Challenging:** Why LogNormal ?
- ▶ Simple-model of a complex-reality? The **Service Process:**

## The (Telephone) Service Process: Phase-Type Model

## Retail Service (Israeli Bank)


## Work Design (Time Study)



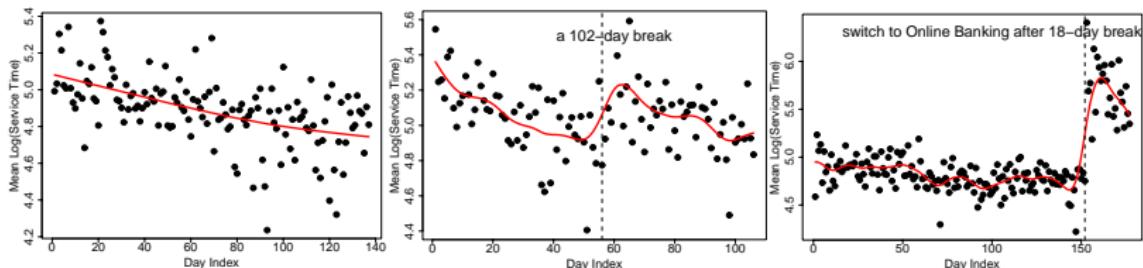

# Individual Agents: Service-Time, Variability

Agent 14115

Service-Time Evolution: 6 month



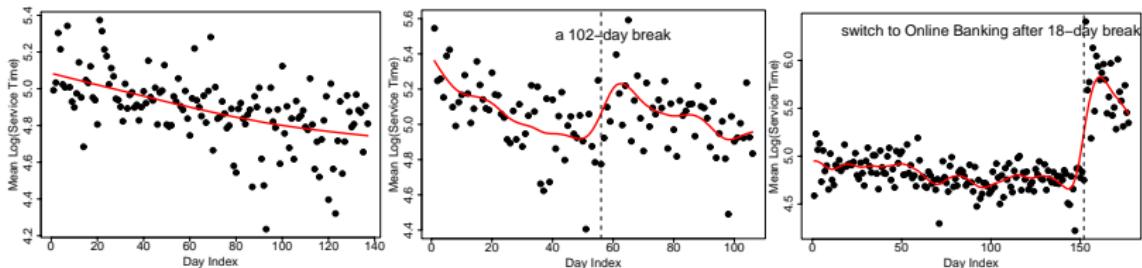
Log(Service-Time)



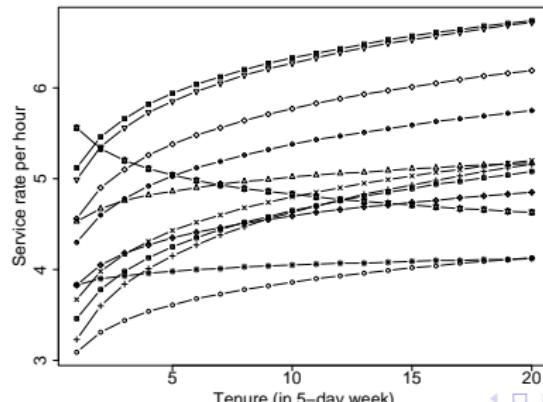

- ▶ **Learning:** Noticeable decreasing-trend in service-time
- ▶ **LogNormal** Service-Time, individually and collectively

# Individual Agents: Learning, Forgetting, Switching

Daily-Average Log(Service-Time), over 6 months


Agents 14115, 14128, 14136




# Individual Agents: Learning, Forgetting, Switching

Daily-Average Log(Service-Time), over 6 months

Agents 14115, 14128, 14136



Weakly Learning-Curves for 12 Homogeneous(?) Agents



## Why Bother?

In large call centers:

**+One Second** to Service-Time implies **+Millions** in costs, annually

## Why Bother?

In large call centers:

**+One Second** to Service-Time implies **+Millions** in costs, annually

- ▶ **Classical IE with New-age Technology:**

- ▶ Work Design, Time and "Motion" Studies (w/ **Khudiakov** (PhD))
- ▶ "Worker" Design, Learning, Forgetting, . . . (w/ **Gans & Shen**)

## Why Bother?

In large call centers:

**+One Second** to Service-Time implies **+Millions** in costs, annually

- ▶ **Classical IE with New-age Technology:**
  - ▶ Work Design, Time and "Motion" Studies (w/ **Khudiakov** (PhD))
  - ▶ "Worker" Design, Learning, Forgetting, . . . (w/ **Gans & Shen**)
- ▶ **Service-Process Model** helps the bank:
  - ▶ **Technology Management** - Old MIS system has slow response & cumbersome protocols, which gives rise to phases with little or no added-value: Justify replacement value
  - ▶ **Cross-Selling** - Potentially more money at the cost of longer services: Justify value, which is congestion-dependent

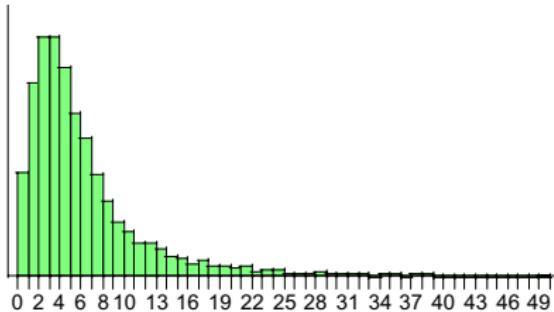
# Why Bother?

In large call centers:

**+One Second** to Service-Time implies **+Millions** in costs, annually

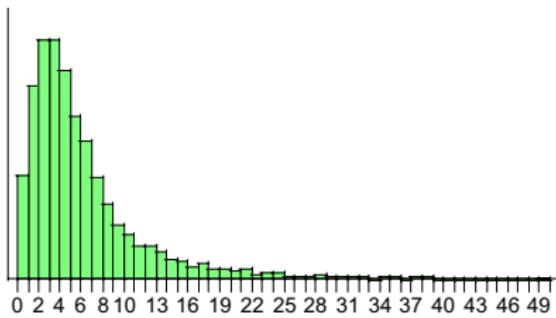
- ▶ **Classical IE with New-age Technology:**
  - ▶ Work Design, Time and "Motion" Studies (w/ **Khudiakov** (PhD))
  - ▶ "Worker" Design, Learning, Forgetting, . . . (w/ **Gans & Shen**)
- ▶ **Service-Process Model** helps the bank:
  - ▶ **Technology Management** - Old MIS system has slow response & cumbersome protocols, which gives rise to phases with little or no added-value: Justify replacement value
  - ▶ **Cross-Selling** - Potentially more money at the cost of longer services: Justify value, which is congestion-dependent
  - ▶ **Learning**: Predict individual future performance, which is important in a high-turnover environment
  - ▶ **Heterogeneity**: Quantify operational consequences (WFM, SBR)

# Why Bother?

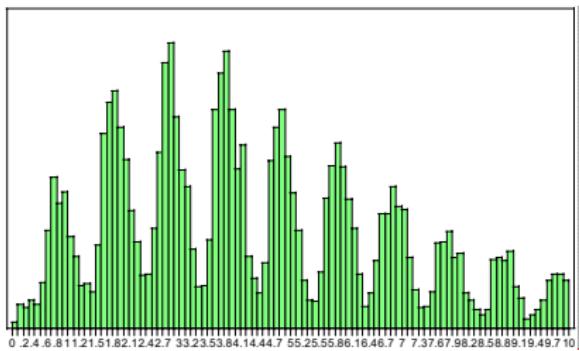

In large call centers:

**+One Second** to Service-Time implies **+Millions** in costs, annually

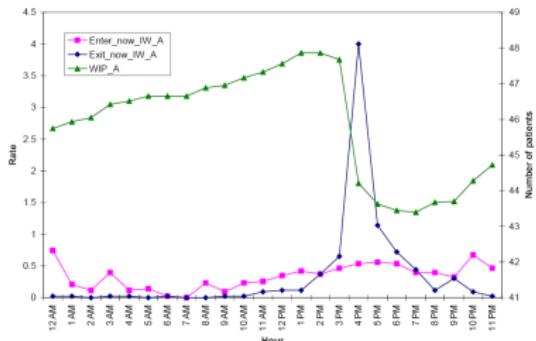
- ▶ **Classical IE with New-age Technology:**
  - ▶ Work Design, Time and "Motion" Studies (w/ **Khudiakov** (PhD))
  - ▶ "Worker" Design, Learning, Forgetting, . . . (w/ **Gans & Shen**)
- ▶ **Service-Process Model** helps the bank:
  - ▶ **Technology Management** - Old MIS system has slow response & cumbersome protocols, which gives rise to phases with little or no added-value: Justify replacement value
  - ▶ **Cross-Selling** - Potentially more money at the cost of longer services: Justify value, which is congestion-dependent
  - ▶ **Learning**: Predict individual future performance, which is important in a high-turnover environment
  - ▶ **Heterogeneity**: Quantify operational consequences (WFM, SBR)
- ▶ **IVR Process Model**: **75% services**, same method, easier data


# Beyond Averages: Length-of-Stay in a Hospital

Israeli Hospital, in Days: LN




# Beyond Averages: Length-of-Stay in a Hospital


Israeli Hospital, in Days: LN



Israeli Hospital, in Hours

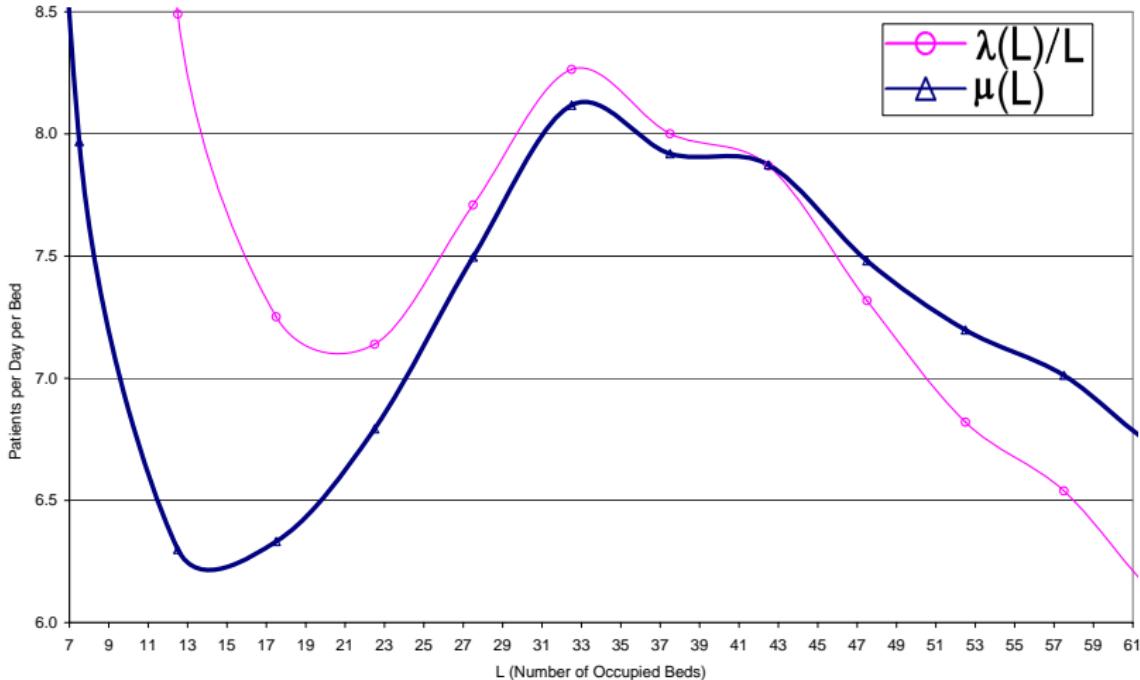


Explanation: Releases around 3pm



# Transportation: Throughput (Flow) vs. Occupancy

Free-Flow → Critical-Occupancy → Congestion (Human)


HERZEL - BALFUR

KN010103-4 1020-1-7-8 27-28/9/93



# ED: Throughput (Flow) vs. Occupancy (Human)

## Congestion-Dependent Flow-Rates: Light, Regular, Heavy



## Empirical Analysis of an ED:

Y. Marmor (PhD), Y. Tseytlin (MSc), G. Yom-Tov (PhD), Mor Armony

# The Technion SEE Center / Laboratory

Data-Based Service Engineering

